一文掌握stream,让你的代码提高一个逼格

2023-12-06 21:20

本文主要是介绍一文掌握stream,让你的代码提高一个逼格,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Stream 是什么?

Stream 是Java 8的新特性之一,是对容器对象功能的增强,借助Lambda表达式,以函数式的方式处理数据,以提高广大程序员的生产力。

  • stream 将要处理的元素当做流;

  • 借助steam api对流元素进行中间操作,比如筛选、排序、聚合等;

  • 提高了开发效率和程序的可读性

  • 提供串行和并行两种模式

什么是流?

Stream不是集合元素,它不是数据结构,并不保存数据,它是有关算法和计算的(可以理解为对Iterator的增强)。Stream并行遍历依赖于Fork/Join框架来拆分任务和加速任务处理。

Stream的结构

整个Stream的操作可以分为三大阶段

  • 数据源创建 只有一次

  • 中间操作 (各种筛选、排序、聚合等),lazy,多次

  • 终端操作(获取想要的结果) 终止只有一次

我们看下java.util.stream包:

BaseStream一共有四个继承接口

  • Stream 通用的

  • LongStream 可以理解为Stream,减少了装箱拆箱的损耗,还有一些别的额外操作

  • IntStream 可以理解为Stream,减少了装箱拆箱的损耗,还有一些别的额外操作

  • DoubleStream 可以理解为Stream,减少了装箱拆箱的损耗,还有一些别的额外操作

每个具体接口里有哪些方法,可以具体看代码 我们重点看下Stream接口:

我们看下Stream里面的方法

数据源创建
  • empty() 创建一个空的Stream

  • of() 创建有限元素的Stream

  • iterate() 创建无限元素的Stream

  • generate() 创建无限元素的Stream

中间操作:
  • filter 过滤,按lambda表达式

  • map (mapTo*, flatMap* ) 映射,按lambda表达式

  • distinct 去重

  • sorted 排序 (可以自定义Comparator)

  • peek 可以理解为克隆一份,优先级高,两边引用的对象都一样

  • skip 跳过Stream中前n个元素

  • limit 只取前n个,这个比较特殊,可以理解为短路,因为返回Stream,就归到了中间操作

  • concat() 将两个Stream拼接到一起合成一个

  • parallel(父)

  • sequential(父)

  • unordered(父)

终止操作
  • reduce 将Stream元素按一个规则组合起来,如sum,avg

  • collect 将流转化为其他形式

  • foreach 遍历Stream的元素

  • foreachOrdered 按Stream的顺序执行

  • toArray 将Stream转为数组

  • min 根据指定的Comparator返回一个最小的Optional对象

  • max 根据指定的Comparator返回一个最大的Optional对象

  • count 返回Stream中元素的个数

short-circuiting (可以理解为特殊的终止操作)

短路操作,有时候在遍历的过程中,达到某个条件就终止

  • anyMatch 判断Stream中的元素是否有满足指定条件的元素,有满足的返回true

  • allMatch 判断Stream中元素是否全部满足指定条件,全部满足返回true

  • noneMatch 都不满足指定条件,返回true

  • findFirst 找到第一个元素的Optional对象

  • findAny 返回任意一个元素,并行中随机,串行中一直返回第一个

数据源的创建方式
  • 从Collection和数组获得
public interface Collection<E> extends Iterable<E> {//串行default Stream<E> stream() {return StreamSupport.stream(spliterator(), false);}// 并行default Stream<E> parallelStream() {return StreamSupport.stream(spliterator(), true);}
}
  • 从数组获取
//通过Arrays的静态方法获取
public class Arrays {//有很多重载方法public static IntStream stream(int[] array) {return stream(array, 0, array.length);}//这里有很多指定类型的Stream重载public static *Stream stream(....) {return stream(...);}public static <T> Stream<T> stream(T[] array, int startInclusive, int endExclusive) {return StreamSupport.stream(spliterator(array, startInclusive, endExclusive), false);}
}
// 通过Stream的静态方法获取
public interface Stream<T> extends BaseStream<T, Stream<T>> {public static<T> Stream<T> of(T t) {return StreamSupport.stream(new Streams.StreamBuilderImpl<>(t), false);}@SafeVarargs@SuppressWarnings("varargs") // Creating a stream from an array is safepublic static<T> Stream<T> of(T... values) {return Arrays.stream(values);}//这里还有一些其他的方式获取,就不列举了
}
  • 从BufferedReader获得
public class BufferedReader extends Reader {public Stream<String> lines() {.....return StreamSupport.stream(Spliterators.spliteratorUnknownSize(iter, Spliterator.ORDERED | Spliterator.NONNULL), false);}
}
  • 静态工厂
// LongStream 和DoubleStream类似
public interface IntStream extends BaseStream<Integer, IntStream> {public static IntStream range(int startInclusive, int endExclusive) {if (startInclusive >= endExclusive) {return empty();} else {return StreamSupport.intStream(new Streams.RangeIntSpliterator(startInclusive, endExclusive, false), false);}}
}public final class Files {public static Stream<Path> walk(Path start, FileVisitOption... options) throws IOException {return walk(start, Integer.MAX_VALUE, options);}
}
  • 自己构建
通过实现java.util.Spliterator 自己构建,具体可以参考其中的任意一个示例
  • 其他方式
public class Random implements java.io.Serializable {ints(...)longs(...)doubles(...)
}public final class Pattern  implements java.io.Serializable{public Stream<String> splitAsStream(final CharSequence input) {}
}public class JarFile extends ZipFile {public Stream<JarEntry> stream() {}
}

我们通过以上方式构建,跟踪源代码,我们发现最终指向的是:

public final class StreamSupport {}
中间操作

**一个流可以后面跟随零个或多个中间操作。其目的主要是打开流,做出某种程度的数据映射/过滤,然后返回一个新的流,交给下一个操作使用。这类操作都是惰性化的(lazy),就是说,仅仅调用到这类方法,并没有真正开始流的遍历。

中间操作都是lazy的,多个中间操作只会在终止操作的时候融合(融合的不仅仅是中间操作,还有数据源的创建)起来,一次循环完成。我们可以这样简单的理解,Stream里有个中间操作函数的集合,每次转换操作就是把转换函数放入这个集合中,在终止 操作的时候循环Stream对应的集合,然后对每个元素执行所有的函数。**

比如:下面的这两个创建的都是无限流,如果不是最终遍历的时候才执行,那么我们为了取几个数,创建的数据源是多大呢?

我们把jvm的参数设置为3mb,如下图:

    @Testpublic void generate(){Stream.iterate(0, (x) -> x + 2).limit(5).forEach(System.out::println);Stream.generate(()-> Math.random()).limit(5L).forEach(System.out::println);}

输出结果:

0
2
4
6
8
0.9473776969196388
0.6723046943435518
0.1704873740373829
0.169983516956142
0.6080414664225631

我们看下基础依赖,用于构建测试所需要的对象

public class Java8StreamTest {List<LoginInfo> list = null;Map<String,LoginInfo> map = null;private int getAge(){int age =new Random().nextInt(100);return age>18 ? age : 18;}private long getDate(){long det = new Random().nextLong();return System.currentTimeMillis() - det;}private String getLoginSource(){String[] sources = {"ios","android","h5"};return sources[new Random().nextInt(sources.length)];}private String getNickName(int i){String[] nicks = {"yxk","yxkong","tao","java"};return nicks[new Random().nextInt(nicks.length)] +i;}private String getMobile(int i){long[] nicks = {15600000000L,13600000000L,15100000000L,13300000000L};return nicks[new Random().nextInt(nicks.length)] + Long.valueOf(i) +"";}@Beforepublic void init(){list = new ArrayList<>();map = new HashMap<>();LoginInfo info = null;for (int i = 0; i < 100; i++) {info = new LoginInfo(Long.valueOf(i),getMobile(i),getNickName(i),getDate(),getLoginSource(),getAge(),getDate());list.add(info);map.put(info.getMobile(),info);}}@Testpublic void test(){list.stream().forEach(System.out::println);}
}
class LoginInfo implements Serializable {private Long userId;private String mobile;private String nickName;private long loginTime;private String loginSource;private int age;private long registerTime;public LoginInfo(Long userId, String mobile, String nickName, long loginTime, String loginSource, int age, long registerTime) {this.userId = userId;this.mobile = mobile;this.nickName = nickName;this.loginTime = loginTime;this.loginSource = loginSource;this.age = age;this.registerTime = registerTime;}public Long getUserId() {return userId;}public String getMobile() {return mobile;}public String getNickName() {return nickName;}public long getLoginTime() {return loginTime;}public String getLoginSource() {return loginSource;}public int getAge() {return age;}public long getRegisterTime() {return registerTime;}@Overridepublic String toString() {return "LoginInfo{" +"userId=" + userId +", mobile='" + mobile + '\'' +", nickName='" + nickName + '\'' +", loginTime=" + loginTime +", loginSource='" + loginSource + '\'' +", age=" + age +", registerTime=" + registerTime +'}';}
}
  • filter 操作,过滤满足条件的数据
    @Testpublic void filter(){/*** 我们过滤得到年龄>18 且小于30的登录渠道为h5的用户*/list.stream().filter(s->s.getAge()>18 && s.getAge()<30).filter(s->"h5".equals(s.getLoginSource())).forEach(System.out::println);boolean exist = list.stream().filter(s->s.getAge()>18 && s.getAge()<30).filter(s->"h5".equals(s.getLoginSource())).anyMatch(s->s.getNickName().contains("yxk"));System.out.println(exist);}
  • map/flatmap map 的意思是将Stream里的对象进行映射,至于映射成什么,看你写的lambda

flatmap 和map的意思差不多,只不过flatmap映射的是一个Stream对象,这点不同

    @Testpublic void map(){list.stream().map(s -> s.getNickName()).limit(3).forEach(System.out::println);list.stream().flatMap(s->Stream.of(s.getNickName())).limit(3).forEachOrdered(System.out::println);}
  • distinct/sorted 去重
    @Testpublic void distinctAndSorted(){int[] nums = {5,1,3,3,1};Arrays.stream(nums).distinct().sorted().forEach(System.out::println);list.stream().distinct().sorted((a,b)-> a.getMobile().compareTo(b.getMobile())).limit(3).forEach(System.out::println);list.stream().distinct().sorted((a,b)-> b.getMobile().compareTo(a.getMobile())).limit(3).forEach(System.out::println);//可以推断出中间操作是按顺序执行的list.stream().distinct().limit(3).sorted((a,b)-> a.getMobile().compareTo(b.getMobile())).forEach(System.out::println);list.stream().distinct().limit(3).sorted((a,b)-> b.getMobile().compareTo(a.getMobile())).forEach(System.out::println);}
  • peek和skip
    @Testpublic void skipAndPeek(){list.stream().skip(98).peek(s-> s.setAge(s.getAge()+100)).forEach(System.out::println);}
  • reduce 归约,也称缩减,顾名思义,是把一个流缩减成一个值,能实现对集合求和、求乘积和求最值操作。
    @Testpublic void reduce(){int[] nums = {5,1,3,3,1};final OptionalInt reduceSum = Arrays.stream(nums).reduce(Integer::sum);final int sum = Arrays.stream(nums).sum();Assert.assertEquals(reduceSum.getAsInt(),sum);final OptionalInt reduceMax = Arrays.stream(nums).reduce(Integer::max);final OptionalInt max = Arrays.stream(nums).max();Assert.assertEquals(reduceMax,max);}
  • collect
    @Testpublic void collect(){//转成listfinal List<LoginInfo> list1 = list.stream().filter(l -> l.getAge() > 18 && l.getAge() < 30).collect(Collectors.toList());list1.forEach(l-> System.out.println("list:"+l.getUserId()));//转成setfinal Set<LoginInfo> set = list.stream().filter(l -> l.getAge() > 18 && l.getAge() < 30).collect(Collectors.toSet());set.forEach(l-> System.out.println("set:"+l.getUserId()));//转成map key是userId,value 是 LoginInfofinal Map<Long, LoginInfo> map = list.stream().filter(l -> l.getAge() > 18 && l.getAge() < 30).collect(Collectors.toMap(LoginInfo::getUserId, l -> l));map.forEach((k,v)-> System.out.println("map:"+k));//转成map  key是userId,value 是agefinal Map<Long, Integer> map1 = list.stream().filter(l -> l.getAge() > 18 && l.getAge() < 30).collect(Collectors.toMap(LoginInfo::getUserId, LoginInfo::getAge));// 按loginSource 进行分组final Map<String, List<LoginInfo>> map2 = list.stream().collect(Collectors.groupingBy(LoginInfo::getLoginSource));map2.forEach((k,v)-> System.out.println(k+" size:"+ v.size()));// 年龄大于60进行分组final ConcurrentMap<Boolean, List<Integer>> concurrentMap = list.stream().flatMap(l -> Stream.of(l.getAge())).collect(Collectors.groupingByConcurrent(l -> l.intValue() > 60));concurrentMap.forEach((k,v)-> System.out.println(k+" size:"+ v.size()));// 将nickName 拼接起来 [yxkong0,yxk1,java2...]final String collect = list.stream().map(LoginInfo::getNickName).collect(Collectors.joining(",","[","]"));System.out.println(collect);}
  • foreach
    @Testpublic void foreach(){//foreach无序list.stream().parallel().limit(5).forEach(System.out::println);//forEachOrdered 按.sorted的顺序list.stream().sorted((a,b)->a.getUserId().compareTo(b.getUserId())).parallel().limit(5).forEachOrdered(System.out::println);}
  • toArray
    @Testpublic void toArray(){final Object[] objects = list.stream().limit(5).toArray();Arrays.stream(objects).forEach(System.out::println);//明确指定类型LoginInfofinal LoginInfo[] infos = list.stream().limit(5).toArray(LoginInfo[]::new);Arrays.stream(infos).forEach(System.out::println);}
  • min、max 、count
    @Testpublic void maxAndMinAndCount(){final Optional<LoginInfo> max = list.stream().filter(l -> l.getAge() < 18).max((m, n) -> m.getUserId().compareTo(n.getUserId()));Assert.assertFalse("没有符合条件的数据",max.isPresent());final Optional<LoginInfo> max1 = list.stream().max((m, n) -> m.getUserId().compareTo(n.getUserId()));System.out.println(max1.get());final Optional<LoginInfo> min = list.stream().min((m, n) -> m.getUserId().compareTo(n.getUserId()));System.out.println(min.get());final long count = list.stream().count();Assert.assertEquals("总数等于100",100,count);}
  • short-circuiting
    @Testpublic  void shortCircuiting(){final boolean noneMatch = list.stream().noneMatch(l -> l.getAge() > 100);Assert.assertTrue("没有符合年龄大于100的数据",noneMatch);final boolean anyMatch1 = list.stream().anyMatch(l -> l.getAge() > 90);Assert.assertTrue("有符合条件的数据",anyMatch1);final boolean allMatch = list.stream().allMatch(l -> l.getAge() >= 18);Assert.assertTrue("所有登录用户都满足大于等于18",allMatch);final Optional<LoginInfo> first = list.stream().findFirst();System.out.println(first.get());final Optional<LoginInfo> any = list.stream().findAny();final Optional<LoginInfo> any1 = list.stream().findAny();final Optional<LoginInfo> any2 = list.stream().findAny();Assert.assertTrue("都相等",any.equals(any1) && any.equals(any2));final Optional<LoginInfo> pany = list.stream().parallel().findAny();final Optional<LoginInfo> pany1 = list.stream().parallel().findAny();final Optional<LoginInfo> pany2 = list.stream().parallel().findAny();Assert.assertFalse("在parallel情况下不相等",pany.equals(pany1) && pany.equals(pany2));}

总结

  • 中间操作多次执行

  • 中间操作惰性执行

  • 中间操作按顺序执行

  • 终止操作一次后无法再获取流

  • Stream支持并行操作

如果觉得对你有帮助,请关注公众号:5ycode,后续会不断更新哦

公众号图片

这篇关于一文掌握stream,让你的代码提高一个逼格的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/463385

相关文章

python使用Akshare与Streamlit实现股票估值分析教程(图文代码)

《python使用Akshare与Streamlit实现股票估值分析教程(图文代码)》入职测试中的一道题,要求:从Akshare下载某一个股票近十年的财务报表包括,资产负债表,利润表,现金流量表,保存... 目录一、前言二、核心知识点梳理1、Akshare数据获取2、Pandas数据处理3、Matplotl

Django开发时如何避免频繁发送短信验证码(python图文代码)

《Django开发时如何避免频繁发送短信验证码(python图文代码)》Django开发时,为防止频繁发送验证码,后端需用Redis限制请求频率,结合管道技术提升效率,通过生产者消费者模式解耦业务逻辑... 目录避免频繁发送 验证码1. www.chinasem.cn避免频繁发送 验证码逻辑分析2. 避免频繁

精选20个好玩又实用的的Python实战项目(有图文代码)

《精选20个好玩又实用的的Python实战项目(有图文代码)》文章介绍了20个实用Python项目,涵盖游戏开发、工具应用、图像处理、机器学习等,使用Tkinter、PIL、OpenCV、Kivy等库... 目录① 猜字游戏② 闹钟③ 骰子模拟器④ 二维码⑤ 语言检测⑥ 加密和解密⑦ URL缩短⑧ 音乐播放

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Java Stream流之GroupBy的用法及应用场景

《JavaStream流之GroupBy的用法及应用场景》本教程将详细介绍如何在Java中使用Stream流的groupby方法,包括基本用法和一些常见的实际应用场景,感兴趣的朋友一起看看吧... 目录Java Stream流之GroupBy的用法1. 前言2. 基础概念什么是 GroupBy?Stream

一文解密Python进行监控进程的黑科技

《一文解密Python进行监控进程的黑科技》在计算机系统管理和应用性能优化中,监控进程的CPU、内存和IO使用率是非常重要的任务,下面我们就来讲讲如何Python写一个简单使用的监控进程的工具吧... 目录准备工作监控CPU使用率监控内存使用率监控IO使用率小工具代码整合在计算机系统管理和应用性能优化中,监

Python实现MQTT通信的示例代码

《Python实现MQTT通信的示例代码》本文主要介绍了Python实现MQTT通信的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 安装paho-mqtt库‌2. 搭建MQTT代理服务器(Broker)‌‌3. pytho

MySQL进行数据库审计的详细步骤和示例代码

《MySQL进行数据库审计的详细步骤和示例代码》数据库审计通过触发器、内置功能及第三方工具记录和监控数据库活动,确保安全、完整与合规,Java代码实现自动化日志记录,整合分析系统提升监控效率,本文给大... 目录一、数据库审计的基本概念二、使用触发器进行数据库审计1. 创建审计表2. 创建触发器三、Java

一文详解如何使用Java获取PDF页面信息

《一文详解如何使用Java获取PDF页面信息》了解PDF页面属性是我们在处理文档、内容提取、打印设置或页面重组等任务时不可或缺的一环,下面我们就来看看如何使用Java语言获取这些信息吧... 目录引言一、安装和引入PDF处理库引入依赖二、获取 PDF 页数三、获取页面尺寸(宽高)四、获取页面旋转角度五、判断

Redis中Stream详解及应用小结

《Redis中Stream详解及应用小结》RedisStreams是Redis5.0引入的新功能,提供了一种类似于传统消息队列的机制,但具有更高的灵活性和可扩展性,本文给大家介绍Redis中Strea... 目录1. Redis Stream 概述2. Redis Stream 的基本操作2.1. XADD