LeetCode:2646. 最小化旅行的价格总和(dfs + 树形dp C++、Java)

2023-12-06 19:04

本文主要是介绍LeetCode:2646. 最小化旅行的价格总和(dfs + 树形dp C++、Java),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

2646. 最小化旅行的价格总和

题目描述:

实现代码与解析:

DFS + DP

原理思路:


2646. 最小化旅行的价格总和

题目描述:

        现有一棵无向、无根的树,树中有 n 个节点,按从 0 到 n - 1 编号。给你一个整数 n 和一个长度为 n - 1 的二维整数数组 edges ,其中 edges[i] = [ai, bi] 表示树中节点 ai 和 bi 之间存在一条边。

每个节点都关联一个价格。给你一个整数数组 price ,其中 price[i] 是第 i 个节点的价格。

给定路径的 价格总和 是该路径上所有节点的价格之和。

另给你一个二维整数数组 trips ,其中 trips[i] = [starti, endi] 表示您从节点 starti 开始第 i 次旅行,并通过任何你喜欢的路径前往节点 endi 。

在执行第一次旅行之前,你可以选择一些 非相邻节点 并将价格减半。

返回执行所有旅行的最小价格总和。

示例 1:

输入:n = 4, edges = [[0,1],[1,2],[1,3]], price = [2,2,10,6], trips = [[0,3],[2,1],[2,3]]
输出:23
解释:
上图表示将节点 2 视为根之后的树结构。第一个图表示初始树,第二个图表示选择节点 0 、2 和 3 并使其价格减半后的树。
第 1 次旅行,选择路径 [0,1,3] 。路径的价格总和为 1 + 2 + 3 = 6 。
第 2 次旅行,选择路径 [2,1] 。路径的价格总和为 2 + 5 = 7 。
第 3 次旅行,选择路径 [2,1,3] 。路径的价格总和为 5 + 2 + 3 = 10 。
所有旅行的价格总和为 6 + 7 + 10 = 23 。可以证明,23 是可以实现的最小答案。

示例 2:

输入:n = 2, edges = [[0,1]], price = [2,2], trips = [[0,0]]
输出:1
解释:
上图表示将节点 0 视为根之后的树结构。第一个图表示初始树,第二个图表示选择节点 0 并使其价格减半后的树。 
第 1 次旅行,选择路径 [0] 。路径的价格总和为 1 。 
所有旅行的价格总和为 1 。可以证明,1 是可以实现的最小答案。

提示:

  • 1 <= n <= 50
  • edges.length == n - 1
  • 0 <= ai, bi <= n - 1
  • edges 表示一棵有效的树
  • price.length == n
  • price[i] 是一个偶数
  • 1 <= price[i] <= 1000
  • 1 <= trips.length <= 100
  • 0 <= starti, endi <= n - 1

实现代码与解析:

DFS + DP

C++

class Solution {
public:int N = 50 + 10;vector<int> e = vector<int>(N * 2, 0), ne = vector<int>(N * 2, 0), h = vector<int>(N, -1);vector<int> cnt = vector<int>(N, 0);int idx= 0;// 邻接表加边 void add(int a, int b) {e[idx] = b; ne[idx] = h[a]; h[a] = idx++;}bool dfs(int cur, int p, int end) {if (cur == end) {cnt[cur]++;return true;}for (int i = h[cur]; ~i; i = ne[i]) {int j = e[i];if (j == p) continue;if (dfs(j, cur, end)) {cnt[cur]++;return true;}}return false;}// first,当前节点不减半可以获得的最小金额,second,当前节点减半pair<int, int> dpf(int cur, int p, vector<int> price) {pair<int, int> res = {price[cur] * cnt[cur], price[cur] * cnt[cur] / 2};for (int i = h[cur]; ~i; i = ne[i]) {int j = e[i];if (j == p) continue;pair<int, int> t = dpf(j, cur, price);res.first += min(t.first, t.second); // 当前节点不减半,那么孩子可减半,也可不减取最大res.second += t.first; // 当前节点减半,子节点一定不能减半}return res;}int minimumTotalPrice(int n, vector<vector<int>>& edges, vector<int>& price, vector<vector<int>>& trips) {// 初始化图for (auto e: edges) {add(e[0], e[1]);add(e[1], e[0]);}// dfsfor (auto t: trips) {dfs(t[0], -1, t[1]);}auto [x, y] = dpf(0, -1, price);return min(x, y); // 取最小}
};

Java

class Solution {public int N = 50 + 10;public int[] e = new int[N * 2], ne = new int[N * 2], h = new int[N];public int[] cnt = new int[N];public int idx = 0;public void add(int a, int b) {e[idx] = b; ne[idx] = h[a]; h[a] = idx++;}public boolean dfs(int cur, int p, int end) {if (cur == end) {cnt[cur]++;return true;}for (int i = h[cur]; i != -1; i = ne[i]) {int j = e[i];if (j == p) continue;if (dfs(j, cur, end)) {cnt[cur]++;return true;}}return false;}public int[] dp(int cur, int p, int[] price) {int[] res = {price[cur] * cnt[cur], price[cur] * cnt[cur] / 2};for (int i = h[cur]; i != -1; i = ne[i]) {int j = e[i];if (j == p) continue;int[] t = dp(j, cur, price);res[0] += Math.min(t[0], t[1]);res[1] += t[0];}return res;}public int minimumTotalPrice(int n, int[][] edges, int[] price, int[][] trips) {Arrays.fill(h, -1);for (int[] t: edges) {add(t[0], t[1]);add(t[1], t[0]);}for (int[] t: trips) {dfs(t[0], -1, t[1]);}int[] res = dp(0, -1, price);return Math.min(res[0], res[1]);}
}

原理思路:

        此题,可以拆分为两道题,DFS + 树形DP

dp之前先用dfs遍历处理一下,找出每个节点总共经过的次数。

dp返回数组的含义和递推式:

        res[0]表示,此节点不减半可获得的最小值,此节点不减半,那么其孩子节点就可减半,可不减半,取最小min。res[0] += min(childres[0], childres[1]); // 这里用childres来表示孩子返回值解释

        res[1]表示,此节点减半可获取的最小值,此节点减半,那么其孩子节点就一定不能减半,直接加上孩子返回的不减半值即可。 res[1] += childres[0];

和树形的 打家劫舍III 思路相同,只不过那题是取最大值。

Leetcode每日一题:打家劫舍系列Ⅰ、Ⅱ、Ⅲ、Ⅳ(2023.9.16~2023.9.19 C++)_Cosmoshhhyyy的博客-CSDN博客

这篇关于LeetCode:2646. 最小化旅行的价格总和(dfs + 树形dp C++、Java)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/462955

相关文章

Spring Boot @RestControllerAdvice全局异常处理最佳实践

《SpringBoot@RestControllerAdvice全局异常处理最佳实践》本文详解SpringBoot中通过@RestControllerAdvice实现全局异常处理,强调代码复用、统... 目录前言一、为什么要使用全局异常处理?二、核心注解解析1. @RestControllerAdvice2

Spring IoC 容器的使用详解(最新整理)

《SpringIoC容器的使用详解(最新整理)》文章介绍了Spring框架中的应用分层思想与IoC容器原理,通过分层解耦业务逻辑、数据访问等模块,IoC容器利用@Component注解管理Bean... 目录1. 应用分层2. IoC 的介绍3. IoC 容器的使用3.1. bean 的存储3.2. 方法注

Spring事务传播机制最佳实践

《Spring事务传播机制最佳实践》Spring的事务传播机制为我们提供了优雅的解决方案,本文将带您深入理解这一机制,掌握不同场景下的最佳实践,感兴趣的朋友一起看看吧... 目录1. 什么是事务传播行为2. Spring支持的七种事务传播行为2.1 REQUIRED(默认)2.2 SUPPORTS2

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

Java进程异常故障定位及排查过程

《Java进程异常故障定位及排查过程》:本文主要介绍Java进程异常故障定位及排查过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、故障发现与初步判断1. 监控系统告警2. 日志初步分析二、核心排查工具与步骤1. 进程状态检查2. CPU 飙升问题3. 内存

java中新生代和老生代的关系说明

《java中新生代和老生代的关系说明》:本文主要介绍java中新生代和老生代的关系说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、内存区域划分新生代老年代二、对象生命周期与晋升流程三、新生代与老年代的协作机制1. 跨代引用处理2. 动态年龄判定3. 空间分

Java设计模式---迭代器模式(Iterator)解读

《Java设计模式---迭代器模式(Iterator)解读》:本文主要介绍Java设计模式---迭代器模式(Iterator),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录1、迭代器(Iterator)1.1、结构1.2、常用方法1.3、本质1、解耦集合与遍历逻辑2、统一

Java内存分配与JVM参数详解(推荐)

《Java内存分配与JVM参数详解(推荐)》本文详解JVM内存结构与参数调整,涵盖堆分代、元空间、GC选择及优化策略,帮助开发者提升性能、避免内存泄漏,本文给大家介绍Java内存分配与JVM参数详解,... 目录引言JVM内存结构JVM参数概述堆内存分配年轻代与老年代调整堆内存大小调整年轻代与老年代比例元空

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

Java 线程安全与 volatile与单例模式问题及解决方案

《Java线程安全与volatile与单例模式问题及解决方案》文章主要讲解线程安全问题的五个成因(调度随机、变量修改、非原子操作、内存可见性、指令重排序)及解决方案,强调使用volatile关键字... 目录什么是线程安全线程安全问题的产生与解决方案线程的调度是随机的多个线程对同一个变量进行修改线程的修改操