Flink流批一体计算(23):Flink SQL之多流kafka写入多个mysql sink

本文主要是介绍Flink流批一体计算(23):Flink SQL之多流kafka写入多个mysql sink,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

1. 准备工作

生成数据

创建数据表

2. 创建数据表

创建数据源表

创建数据目标表

3. 计算

WITH子句


1. 准备工作

生成数据

source kafka json 数据格式 :

topic  case_kafka_mysql:

{"ts": "20201011","id": 8,"price_amt":211}

topic  flink_test_2:

{"id": 8,"coupon_price_amt":100}

注意:针对双流中的每条记录都发触发

topic: case_kafka_mysql

docker exec -it 192d1369463a bashbash-5.1# cd /opt/kafka_2.12-2.5.0/binbash-5.1# ./kafka-console-producer.sh --broker-list localhost:9092 --topic case_kafka_mysql>{"ts": "20201011","id": 8,"price_amt":211}

topic: flink_test_2

docker exec -it 192d1369463a bashbash-5.1# cd /opt/kafka_2.12-2.5.0/binbash-5.1# ./kafka-console-producer.sh --broker-list localhost:9092 --topic flink_test_2>{"id": 8,"coupon_price_amt":100}

创建数据表

mysql 建表语句

CREATE TABLE `sync_test_2` (`id` bigint(11) NOT NULL AUTO_INCREMENT,`ts` varchar(64) DEFAULT NULL,`total_gmv` bigint(11) DEFAULT NULL,PRIMARY KEY (`id`),UNIQUE KEY `uidx` (`ts`) USING BTREE) ENGINE=InnoDB AUTO_INCREMENT=5 DEFAULT CHARSET=utf8mb4;CREATE TABLE `sync_test_22` (`id` bigint(11) NOT NULL AUTO_INCREMENT,`ts` varchar(64) DEFAULT NULL,`coupon_ratio` double DEFAULT NULL,PRIMARY KEY (`id`),UNIQUE KEY `uidx` (`ts`) USING BTREE) ENGINE=InnoDB AUTO_INCREMENT=5 DEFAULT CHARSET=utf8mb4;

2. 创建数据表

创建数据源表
create table flink_test_2_1 (id BIGINT,ts VARCHAR,price_amt BIGINT,proctime AS PROCTIME ()
)with ('connector' = 'kafka','topic' = 'case_kafka_mysql','properties.bootstrap.servers' = '127.0.0.1:9092','properties.group.id' = 'flink_gp_test2-1','scan.startup.mode' = 'earliest-offset','format' = 'json','json.fail-on-missing-field' = 'false','json.ignore-parse-errors' = 'true','properties.zookeeper.connect' = '127.0.0.1:2181/kafka');create table flink_test_2_2 (id BIGINT,coupon_price_amt BIGINT,proctime AS PROCTIME ()
)with ('connector' = 'kafka','topic' = 'flink_test_2','properties.bootstrap.servers' = '127.0.0.1:9092','properties.group.id' = 'flink_gp_test2-2','scan.startup.mode' = 'earliest-offset','format' = 'json','json.fail-on-missing-field' = 'false','json.ignore-parse-errors' = 'true','properties.zookeeper.connect' = '127.0.0.1:2181/kafka');

关键配置的说明:

json.fail-on-missing-field:在json缺失字段时是否报错

json.ignore-parse-errors:在解析json失败时是否报错

一般无法保证json格式,所以以上两个配置是比较重要的。

创建数据目标表
CREATE TABLE sync_test_2 (ts string,total_gmv bigint,PRIMARY KEY (ts) NOT ENFORCED) WITH ('connector' = 'jdbc','url' = 'jdbc:mysql://127.0.0.1:3306/db01?characterEncoding=UTF-8','table-name' = 'sync_test_2','username' = 'root','password' = 'Admin');CREATE TABLE sync_test_22 (ts string,coupon_ration bigint,PRIMARY KEY (ts) NOT ENFORCED) WITH ('connector' = 'jdbc','url' = 'jdbc:mysql://127.0.0.1:3306/db01?characterEncoding=UTF-8','table-name' = 'sync_test_2','username' = 'root','password' = 'Admin');

3. 计算

一个作业中写入一个Sink或多个Sink

说明 写入多个Sink语句时,需要以BEGIN STATEMENT SET;开头,以END;结尾。

BEGIN STATEMENT SET;      --写入多个Sink时,必填。
INSERT INTO sync_test_2
SELECTts,SUM(price_amt - coupon_price_amt) AS total_gmv
FROM(SELECTa.ts as ts,a.price_amt as price_amt,b.coupon_price_amt as coupon_price_amtFROMflink_test_2_1 as aLEFT JOIN flink_test_2_2 b on b.id = a.id)
GROUP BY ts;INSERT INTO sync_test_22
SELECTts,sum(coupon_price_amt)/sum(amount) AS coupon_ration
FROM(SELECTa.ts as ts,a.price_amt as price_amt,b.coupon_price_amt as coupon_price_amtFROMflink_test_2_1 as aLEFT JOIN flink_test_2_2 b on b.id = a.id)
GROUP BY ts;;
END;      --写入多个Sink时,必填。

WITH子句

WITH提供了一种编写辅助语句以用于更大的查询的方法。这些语句通常被称为公共表表达式(CTE),可以被视为定义仅针对一个查询存在的临时视图。

改写上述查询:

BEGIN STATEMENT SET;      --写入多个Sink时,必填。
with orders_with_coupon AS (SELECTa.ts as ts,a.price_amt as price_amt,b.coupon_price_amt as coupon_price_amtFROMflink_test_2_1 as aLEFT JOIN flink_test_2_2 b on b.id = a.id
)INSERT INTO sync_test_2
SELECTts,SUM(price_amt - coupon_price_amt) AS total_gmv
FROM orders_with_coupon
GROUP BY ts;INSERT INTO sync_test_22
SELECTts,coupon_price_amt/price_amt AS coupon_ration
FROM orders_with_coupon
GROUP BY ts;;
END;      --写入多个Sink时,必填。

这篇关于Flink流批一体计算(23):Flink SQL之多流kafka写入多个mysql sink的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/461648

相关文章

MySQL 多表连接操作方法(INNER JOIN、LEFT JOIN、RIGHT JOIN、FULL OUTER JOIN)

《MySQL多表连接操作方法(INNERJOIN、LEFTJOIN、RIGHTJOIN、FULLOUTERJOIN)》多表连接是一种将两个或多个表中的数据组合在一起的SQL操作,通过连接,... 目录一、 什么是多表连接?二、 mysql 支持的连接类型三、 多表连接的语法四、实战示例 数据准备五、连接的性

MySQL中的分组和多表连接详解

《MySQL中的分组和多表连接详解》:本文主要介绍MySQL中的分组和多表连接的相关操作,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录mysql中的分组和多表连接一、MySQL的分组(group javascriptby )二、多表连接(表连接会产生大量的数据垃圾)MySQL中的

使用Java将各种数据写入Excel表格的操作示例

《使用Java将各种数据写入Excel表格的操作示例》在数据处理与管理领域,Excel凭借其强大的功能和广泛的应用,成为了数据存储与展示的重要工具,在Java开发过程中,常常需要将不同类型的数据,本文... 目录前言安装免费Java库1. 写入文本、或数值到 Excel单元格2. 写入数组到 Excel表格

MySQL 中的 JSON 查询案例详解

《MySQL中的JSON查询案例详解》:本文主要介绍MySQL的JSON查询的相关知识,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录mysql 的 jsON 路径格式基本结构路径组件详解特殊语法元素实际示例简单路径复杂路径简写操作符注意MySQL 的 J

Windows 上如果忘记了 MySQL 密码 重置密码的两种方法

《Windows上如果忘记了MySQL密码重置密码的两种方法》:本文主要介绍Windows上如果忘记了MySQL密码重置密码的两种方法,本文通过两种方法结合实例代码给大家介绍的非常详细,感... 目录方法 1:以跳过权限验证模式启动 mysql 并重置密码方法 2:使用 my.ini 文件的临时配置在 Wi

MySQL重复数据处理的七种高效方法

《MySQL重复数据处理的七种高效方法》你是不是也曾遇到过这样的烦恼:明明系统测试时一切正常,上线后却频频出现重复数据,大批量导数据时,总有那么几条不听话的记录导致整个事务莫名回滚,今天,我就跟大家分... 目录1. 重复数据插入问题分析1.1 问题本质1.2 常见场景图2. 基础解决方案:使用异常捕获3.

SQL中redo log 刷⼊磁盘的常见方法

《SQL中redolog刷⼊磁盘的常见方法》本文主要介绍了SQL中redolog刷⼊磁盘的常见方法,将redolog刷入磁盘的方法确保了数据的持久性和一致性,下面就来具体介绍一下,感兴趣的可以了解... 目录Redo Log 刷入磁盘的方法Redo Log 刷入磁盘的过程代码示例(伪代码)在数据库系统中,r

mysql中的group by高级用法

《mysql中的groupby高级用法》MySQL中的GROUPBY是数据聚合分析的核心功能,主要用于将结果集按指定列分组,并结合聚合函数进行统计计算,下面给大家介绍mysql中的groupby用法... 目录一、基本语法与核心功能二、基础用法示例1. 单列分组统计2. 多列组合分组3. 与WHERE结合使

Java中Switch Case多个条件处理方法举例

《Java中SwitchCase多个条件处理方法举例》Java中switch语句用于根据变量值执行不同代码块,适用于多个条件的处理,:本文主要介绍Java中SwitchCase多个条件处理的相... 目录前言基本语法处理多个条件示例1:合并相同代码的多个case示例2:通过字符串合并多个case进阶用法使用

Mysql用户授权(GRANT)语法及示例解读

《Mysql用户授权(GRANT)语法及示例解读》:本文主要介绍Mysql用户授权(GRANT)语法及示例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录mysql用户授权(GRANT)语法授予用户权限语法GRANT语句中的<权限类型>的使用WITH GRANT