C++ day55 判断子序列 不同的子序列

2023-12-06 02:12
文章标签 c++ 判断 序列 不同 day55

本文主要是介绍C++ day55 判断子序列 不同的子序列,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目1:392 判断子序列

题目链接:判断子序列

对题目的理解

判断字符串s是否为t的子序列

字符串s和字符串t的长度大于等于0,字符串s的长度小于等于字符串t的长度,本题其实和最长公共子序列的那道题很相似,相当于找两个子序列的最长公共序列长度,最终这个最长公共序列的长度是否等于字符串s的长度

进阶:如果有大量的字符串s,s1,s2,....,sk(k>=10亿),依次检查是否为t的子序列

动态规划(编辑距离的入门题目)

动规五部曲

1)dp数组及下标i的含义

dp[i][j]:以i-1为结尾的字符串s和以j-1为结尾的字符串t的最长公共子序列的长度

2)递推公式

if (s[i - 1] != t[j - 1]),此时相当于t要删除元素,如果把当前元素t[j - 1]删除,那么dp[i][j] 的数值就是 看s[i - 1]与 t[j - 2]的比较结果了,即:dp[i][j] = dp[i][j - 1];

3)dp数组初始化

根据dp数组的定义,dp[i][0],dp[0][j]没有意义,但是为了满足递推公式,将其初始化为0,其余下标初始化为任意值均可,在之后的计算会被新值覆盖,但是为了初始化方便,均初始成0

4)遍历顺序

根据递推公式,dp[i][j]由dp[i-1][j-1]和dp[i][j-1]推出,遍历顺序从上到下,从左到右

5)打印dp数组

最终的输出结果是dp[s.size()][t.size()]代表最长相同子序列的长度,因为一定要将字符串s和字符串t遍历完,才能判断字符串是否为字符串s的子序列,要不放过任何一个字符,这样才能确保完整性,不落掉任意一个字符,如果这个长度等于s.size(),说明s是t的子序列,返回true

代码,可以直接使用最长公共子序列的代码,只是在最终返回结果的时候与s.size()比较一下

class Solution {
public:bool isSubsequence(string s, string t) {//定义并初始化dp数组vector<vector<int>> dp(s.size()+1,vector<int>(t.size()+1,0));for(int i=1;i<=s.size();i++){for(int j=1;j<=t.size();j++){if(s[i-1]==t[j-1]) dp[i][j]=dp[i-1][j-1]+1;else dp[i][j]=max(dp[i][j-1],dp[i-1][j]);}}if(dp[s.size()][t.size()]==s.size()) return true;else return false;}
};

代码2,是动规五部曲中递推公式中的那个,因为s是最长公共子序列子序列,所以只在t字符串中考虑是否删除元素从而达到减少字符而和字符串s匹配的目的

class Solution {
public:bool isSubsequence(string s, string t) {//定义并初始化dp数组vector<vector<int>> dp(s.size()+1,vector<int>(t.size()+1,0));int result = 0;for(int i=1;i<=s.size();i++){for(int j=1;j<=t.size();j++){if(s[i-1]==t[j-1]) dp[i][j]=dp[i-1][j-1]+1;else dp[i][j]=dp[i][j-1];result = max(result,dp[i][j]);}}if(result==s.size()) return true;else return false;}
};
  • 时间复杂度:O(n × m)
  • 空间复杂度:O(n × m)

代码也可以这样

class Solution {
public:bool isSubsequence(string s, string t) {//定义并初始化dp数组vector<vector<int>> dp(s.size()+1,vector<int>(t.size()+1,0));for(int i=1;i<=s.size();i++){for(int j=1;j<=t.size();j++){if(s[i-1]==t[j-1]) dp[i][j]=dp[i-1][j-1]+1;else dp[i][j]=dp[i][j-1];}}if(dp[s.size()][t.size()]==s.size()) return true;else return false;}
};

题目2:115 不同的子序列

题目链接:不同的子序列

对题目的理解

返回字符串t在字符串s的子序列中出现的个数   注意说的是s的子序列,不一定连续

题目保证答案符合 32 位带符号整数范围

动态规划

动规五部曲

1)dp数组及下标i的含义

dp[i][j] :以i-1为结尾的字符串s中有以j-1为结尾的字符串t个数

2)递推公式

这一类问题,基本是要分析两种情况

  • 当前两字符串末尾的字母相等,s[i - 1] 与 t[j - 1]相等
  • 当前两字符串末尾的字母不等,s[i - 1] 与 t[j - 1] 不相等

s[i - 1] 与 t[j - 1]相等,dp[i][j]可以有两部分组成,(因为字符串s中,可能会包括相同字母顺序出现多次的情况)

1)使用当前的s[i - 1]匹配t[j-1],因为这两个字母已经相同了,所以不需要考虑当前s子串和t子串的最后一位字母s[i-1]和t[j-1]了,即只需要根据前面的s[i-2]和t[j-2]计算的dp[i-1][j-1]个数继续赋值就行,就看前面计算了多少个就可以了,这个继续向下进行赋值就OK

2)不使用当前的s[i - 1]来匹配t[j-1]

例如: s:bagg 和 t:bag ,s[2],s[3] 和 t[2]是相同的,可以用s[3]来匹配,也可以用s[2]匹配,

当s[3]和t[2]相匹配时,当前的s[i-1]与t[i-1]相匹配都对应着最后一个字母g,此时就是第一种情况,取决于dp[i-1][j-1];

但是不使用s[3](假设删除了元素s[3],也有可能和t相匹配),而是使用s[2]来匹配t[2]也是可以的,字符串t中要匹配的字母t[2]还是不变,只是s子串的最后一个字母发生了变化(由s[3]处的g变为s[2]处的g)而已,个数就为同样的t[j]在前面s[i-2]计算的个数,即对应着dp数组中的dp[i-1][j],

所以当s[i - 1] 与 t[j - 1]相等时,将这两种情况得到的结果进行相加,dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j];

当s[i - 1] 与 t[j - 1]不相等时,dp[i][j]只有一部分组成

因为两个子串最末尾的字符已经不等了,所以无法使用s[i-1]匹配t[j-1],则对于t[j-1]不考虑s[i-1],模拟将字符串中的s[i-1]这个元素删除,那么就拿上一层,也就是字符s[i-1]的前一个字符s[i-2]来匹配字符t[i-1]的结果来作为当前字符s[i-1]匹配t[j-1]的结果,

dp[i][j] = dp[i - 1][j]

3)dp数组初始化

根据递推公式,dp[i][j]是从上方和左上方推导而来,第一行与第一列要进行初始化,是递推公式的基础。

根据dp数组定义,dp[i][0]   代表以i-1为结尾的字符串s中有以-1为结尾的空字符串t的个数,而s不为空,如果将s中的字符都删除,则会变成空字符串t  ,则有一个

dp[0][j]  代表以-1为结尾的字符串s中有以j-1为结尾的t字符串的个数,此时s是空字符串,而t不是空字符串,所以无论怎么改变s,都没有办法组成t字符串,所以有0个

交集  dp[0][0] = 1 :空字符串s中有1个空i字符串t

4)遍历顺序

根据递推公式  从左到右,从上到下

5)打印dp数组

最终的结果是dp[s.size()][t.size()],因为最终一定要将字符串s和字符串t遍历完,才能最终判定字符串s中有多少个字符串t,这样才能不落掉任何一个字符,保证字符全部都遍历到,这样才能不落掉任何一个个数

代码

class Solution {
public:int numDistinct(string s, string t) {//定义并初始化dp数组vector<vector<int>> dp(s.size()+1,vector<int>(t.size()+1,0));//初始化dp数组for(int i=0;i<s.size();i++) dp[i][0]=1;for(int i=1;i<=s.size();i++){for(int j=1;j<=t.size();j++){if(s[i-1]==t[j-1]) dp[i][j]=dp[i-1][j-1]+dp[i-1][j];else dp[i][j]=dp[i-1][j];}}return dp[s.size()][t.size()];}
};

上述代码会报如下错误

会有溢出错误,因为是两个整数相加,结果超出了int类型的表示范围

将代码改为如下

class Solution {
public:int numDistinct(string s, string t) {//定义并初始化dp数组vector<vector<uint64_t>> dp(s.size()+1,vector<uint64_t>(t.size()+1,0));//初始化dp数组for(int i=0;i<s.size();i++) dp[i][0]=1;for(int i=1;i<=s.size();i++){for(int j=1;j<=t.size();j++){if(s[i-1]==t[j-1]) dp[i][j]=dp[i-1][j-1]+dp[i-1][j];else dp[i][j]=dp[i-1][j];}}return dp[s.size()][t.size()];}
};
  • 时间复杂度: O(n * m)
  • 空间复杂度: O(n * m)

也可以将类型改为unsigned long long也能顺利通过,代码如下

class Solution {
public:int numDistinct(string s, string t) {//定义并初始化dp数组vector<vector<unsigned long long>> dp(s.size()+1,vector<unsigned long long>(t.size()+1,0));//初始化dp数组for(int i=0;i<s.size();i++) dp[i][0]=1;for(int i=1;i<=s.size();i++){for(int j=1;j<=t.size();j++){if(s[i-1]==t[j-1]) dp[i][j]=dp[i-1][j-1]+dp[i-1][j];else dp[i][j]=dp[i-1][j];}}return dp[s.size()][t.size()];}
};

流程

这篇关于C++ day55 判断子序列 不同的子序列的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/460010

相关文章

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

C++右移运算符的一个小坑及解决

《C++右移运算符的一个小坑及解决》文章指出右移运算符处理负数时左侧补1导致死循环,与除法行为不同,强调需注意补码机制以正确统计二进制1的个数... 目录我遇到了这么一个www.chinasem.cn函数由此可以看到也很好理解总结我遇到了这么一个函数template<typename T>unsigned

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

SpringBoot实现不同接口指定上传文件大小的具体步骤

《SpringBoot实现不同接口指定上传文件大小的具体步骤》:本文主要介绍在SpringBoot中通过自定义注解、AOP拦截和配置文件实现不同接口上传文件大小限制的方法,强调需设置全局阈值远大于... 目录一  springboot实现不同接口指定文件大小1.1 思路说明1.2 工程启动说明二 具体实施2

如何通过try-catch判断数据库唯一键字段是否重复

《如何通过try-catch判断数据库唯一键字段是否重复》在MyBatis+MySQL中,通过try-catch捕获唯一约束异常可避免重复数据查询,优点是减少数据库交互、提升并发安全,缺点是异常处理开... 目录1、原理2、怎么理解“异常走的是数据库错误路径,开销比普通逻辑分支稍高”?1. 普通逻辑分支 v

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

深入解析C++ 中std::map内存管理

《深入解析C++中std::map内存管理》文章详解C++std::map内存管理,指出clear()仅删除元素可能不释放底层内存,建议用swap()与空map交换以彻底释放,针对指针类型需手动de... 目录1️、基本清空std::map2️、使用 swap 彻底释放内存3️、map 中存储指针类型的对象

从基础到进阶详解Python条件判断的实用指南

《从基础到进阶详解Python条件判断的实用指南》本文将通过15个实战案例,带你大家掌握条件判断的核心技巧,并从基础语法到高级应用一网打尽,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录​引言:条件判断为何如此重要一、基础语法:三行代码构建决策系统二、多条件分支:elif的魔法三、

C++ STL-string类底层实现过程

《C++STL-string类底层实现过程》本文实现了一个简易的string类,涵盖动态数组存储、深拷贝机制、迭代器支持、容量调整、字符串修改、运算符重载等功能,模拟标准string核心特性,重点强... 目录实现框架一、默认成员函数1.默认构造函数2.构造函数3.拷贝构造函数(重点)4.赋值运算符重载函数

C++ vector越界问题的完整解决方案

《C++vector越界问题的完整解决方案》在C++开发中,std::vector作为最常用的动态数组容器,其便捷性与性能优势使其成为处理可变长度数据的首选,然而,数组越界访问始终是威胁程序稳定性的... 目录引言一、vector越界的底层原理与危害1.1 越界访问的本质原因1.2 越界访问的实际危害二、基