Dinky之安装部署与基本使用

2023-12-06 00:15

本文主要是介绍Dinky之安装部署与基本使用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Dinky之安装部署与基本使用

  • Dinky概览
  • Linux安装部署
    • 解压到指定目录
    • 初始化MySQL数据库
    • 修改配置文件
    • 加载依赖
    • 启动Dinky
  • Docker部署
    • 启动dinky-mysql-server镜像
    • 启动dinky-standalone-server镜像
  • Dinky的基本使用
    • 上传jar包
    • Flink配置
    • 集群管理
      • 集群实例管理
      • 集群配置管理
    • 创建作业
    • 语句编写与作业配置
    • 发布运行作业
    • 查看作业运行情况
  • Dinky的其他功能服务
    • Catalog
    • 变量
    • FlinkSQL环境
    • 数据源
    • 元数据中心

Dinky概览

Dinky是一个开箱即用的一站式实时计算平台以Apache Flink为基础,连接OLAP和数据湖等众多框架致力于流批一体和湖仓一体的建设与实践。

主要功能:

在这里插入图片描述
原理:
在这里插入图片描述
核心特性:

在这里插入图片描述

官网:http://www.dlink.top/

GitHub:https://github.com/DataLinkDC/dinky

文档:http://www.dlink.top/docs/next/get_started/quick_experience/

Linux安装部署

解压到指定目录

Dinky不依赖任何外部环境,完全解耦,支持同时连接多个不同的集群实例进行运维。

下载地址:https://github.com/DataLinkDC/dinky/releases

wget https://github.com/DataLinkDC/dinky/releases/download/v0.7.3/dlink-release-0.7.3.tar.gz

上传安装包并解压

tar -zxvf dlink-release-0.7.3.tar.gz -C /usr/local/programmv dlink-release-0.7.3 dinkycd dinky

初始化MySQL数据库

Dinky采用mysql作为后端的存储库,Dinky部署需要MySQL5.7 以上版本,需要创建Dinky的后端数据库,执行初始化sql文件

在Dinky/sql目录下分别放置了dinky.sql upgrade/${version}_schema/mysql/mysql_ddl

如果第一次部署,直接执行sql/dinky-mysql.sql 如果之前已经部署,根据版本号执行upgrade目录下存放的相应版本升级sql
#登录mysql
mysql -uroot -p123456#创建数据库
create database dinky;# 切换数据库
use dinky;# 执行初始化sql文件
source /usr/local/program/dinky/sql/dinky.sql

修改配置文件

cd dinky/configvim ./application.yml

修改Dinky连接 mysql 的配置文件

spring:datasource:url: jdbc:mysql://${MYSQL_ADDR:node01:3306}/${MYSQL_DATABASE:dinky}?useUnicode=true&characterEncoding=UTF-8&autoReconnect=true&useSSL=false&zeroDateTimeBehavior=convertToNull&serverTimezone=Asia/Shanghai&allowPublicKeyRetrieval=trueusername: ${MYSQL_USERNAME:root}password: ${MYSQL_PASSWORD:123456}driver-class-name: com.mysql.cj.jdbc.Driverapplication:name: dlink

加载依赖

Dinky需要具备自身的Flink环境,该Flink环境的实现需要用户自己在Dinky根目录下 plugins/flink${FLINK_VERSION}文件夹并上传相关的Flink依赖。

下载Flink

wget https://repo.huaweicloud.com/apache/flink/flink-1.17.0/flink-1.17.0-bin-scala_2.12.tgz

解压Flink

tar  -zxvf flink-1.17.0-bin-scala_2.12.tgz 

加载Flink依赖

对应 Flink 版本的依赖,放在Dinky 安装目录下 plugins/flink${FLINK_VERSION}下

cp flink-1.17.0/lib/*  dinky/plugins/flink1.17/

加载Hadoop依赖

注意:Dinky当前版本的yarn的perjob与application执行模式依赖flink-shade-hadoop,需要额外添加flink-shade-hadoop-uber-3包。对于dinky来说,Hadoop3的uber依赖可以兼容hadoop2。

wget https://repository.cloudera.com/artifactory/cloudera-repos/org/apache/flink/flink-shaded-hadoop-3-uber/3.1.1.7.2.9.0-173-9.0/flink-shaded-hadoop-3-uber-3.1.1.7.2.9.0-173-9.0.jar

放到dinky/plugins目录

共享的JAR包放plugins目录,否则放不同版本的Flink目录下

cp flink-shaded-hadoop-3-uber-3.1.1.7.2.9.0-173-9.0.jar dinky/plugins/

启动Dinky

#启动
sh auto.sh start# 启动指令的第二个参数则是版本选择
sh auto.sh start 1.17#停止
sh auto.sh stop#重启
sh auto.sh restart 1.17#查看状态
sh auto.sh status# 查看启动日志信息
tail -f logs/dlink.log -n 200

服务启动后,默认端口 8888,访问:http://127.0.0.1:8888

在这里插入图片描述
默认用户名/密码: admin/admin

在这里插入图片描述

Docker部署

启动dinky-mysql-server镜像

Dinky采用mysql作为后端的存储库,启动该镜像提供Dinky的MySQL业务库能力

docker run --name dinky-mysql dinkydocker/dinky-mysql-server:0.7.2

出现以下日志,则启动成功

2023-07-12T08:47:52.930058Z 0 [Note] mysqld: ready for connections.
Version: '5.7.41'  socket: '/var/run/mysqld/mysqld.sock'  port: 3306  MySQL Community Server (GPL)

如果有mysql 服务,执行对应版本的SQL文件即可。

docker run --restart=always -p 8888:8888 -p 8081:8081  -e MYSQL_ADDR=IP:3306 --name dinky dinkydocker/dinky-standalone-server:0.7.2-flink14

启动dinky-standalone-server镜像

提供Dinky实时计算平台

docker run --restart=always -p 8888:8888 -p 8081:8081  -e MYSQL_ADDR=dinky-mysql:3306 --name dinky --link dinky-mysql:dinky-mysql dinkydocker/dinky-standalone-server:0.7.2-flink14

出现以下日志,则启动成功

Dinky pid is not exist in /opt/dinky/run/dinky.pid
FLINK VERSION : 1.14
........................................Start Dinky Successfully........................................
........................................Restart Successfully........................................

Dinky的基本使用

上传jar包

当Flink使用YARN运行模式中的Application模式部署时,需要将flink和dinky相关依赖包上传到HDFS

1.上传dinky的JAR包

# 创建HDFS目录
hadoop fs -mkdir -p /dinky/jar/hadoop fs -put /usr/local/program/dinky/jar/dlink-app-1.17-0.7.3-jar-with-dependencies.jar /dinky/jar

2.上传flink的JAR包

# 创建HDFS目录
hadoop fs -mkdir /flink/jarhadoop fs -put /usr/local/program/flink/lib /flink/jarhadoop fs -put /usr/local/program/flink/plugins /flink/jar

Flink配置

当使用 Application 模式以及 RestAPI 时,需要修改相关Flink配置。提交FlinkSQL 的Jar文件路径指向:上传到HDFS中的Dinky的JAR包

hdfs://node01:9000/dinky/jar/dlink-app-1.17-0.7.3-jar-with-dependencies.jar

在这里插入图片描述

集群管理

提交FlinkSQL作业时,首先要保证安装了Flink集群。Flink当前支持的集群模式包括:Standalone 集群、Yarn 集群、Kubernetes 集群Dinky提供了两种集群管理方式,一种是集群实例管理,一种是集群配置管理。

集群实例管理

Dinky推荐在使用 Yarn Session、K8s Session、StandAlone类型时采用集群实例的方式注册集群,其他类型的集群只能查看作业信息。对于已经注册的集群实例,可以对集群实例做编辑、删除、搜索、心跳检测和回收等。

1.注册Standalone集群

启动Flink的Standalone模式

[root@node01 flink]# bin/start-cluster.sh

注册集群
在这里插入图片描述
配置成功则显示正常:
在这里插入图片描述

2.注册Yarn Session集群

启动Flink的YARN运行模式

[root@node01 flink]# bin/yarn-session.sh -d

启动日志如下,关注日志信息: Found Web Interface node02:42628 of application 'application_1689258255717_0002'.

2023-07-13 22:50:08,081 INFO  org.apache.flink.yarn.YarnClusterDescriptor                  [] - Cannot use kerberos delegation token manager, no valid kerberos credentials provided.
2023-07-13 22:50:08,088 INFO  org.apache.flink.yarn.YarnClusterDescriptor                  [] - Submitting application master application_1689258255717_0002
2023-07-13 22:50:08,393 INFO  org.apache.hadoop.yarn.client.api.impl.YarnClientImpl        [] - Submitted application application_1689258255717_0002
2023-07-13 22:50:08,393 INFO  org.apache.flink.yarn.YarnClusterDescriptor                  [] - Waiting for the cluster to be allocated
2023-07-13 22:50:08,396 INFO  org.apache.flink.yarn.YarnClusterDescriptor                  [] - Deploying cluster, current state ACCEPTED
2023-07-13 22:50:12,939 INFO  org.apache.flink.yarn.YarnClusterDescriptor                  [] - YARN application has been deployed successfully.
2023-07-13 22:50:12,939 INFO  org.apache.flink.yarn.YarnClusterDescriptor                  [] - Found Web Interface node02:42628 of application 'application_1689258255717_0002'.
JobManager Web Interface: http://node02:42628
2023-07-13 22:50:13,131 INFO  org.apache.flink.yarn.cli.FlinkYarnSessionCli                [] - The Flink YARN session cluster has been started in detached mode. In order to stop Flink gracefully, use the following command:
$ echo "stop" | ./bin/yarn-session.sh -id application_1689258255717_0002
If this should not be possible, then you can also kill Flink via YARN's web interface or via:
$ yarn application -kill application_1689258255717_0002
Note that killing Flink might not clean up all job artifacts and temporary files.

注册集群,根据提示输入相应信息:
在这里插入图片描述
配置成功则显示正常:
在这里插入图片描述

集群配置管理

Dinky推荐在使用Yarn Per Job、Yarn Application、K8s Application类型时采用集群配置的方式注册集群。对于已经注册的集群配置,可以对集群配置做编辑、删除和搜索等

填写核心参数:

Hadoop配置文件路径:/usr/local/program/hadoop/etc/hadoop,指服务器Hadoop配置路径lib路径:hdfs://node01:9000/flink/jar,HDFS中包含Flink运行时依赖JAR的路径Flink配置文件路径:/usr/local/program/flink/conf,指服务器Flink的配置文件路径

点击测试,测试连接成功,则代表配置无问题
在这里插入图片描述

创建作业

创建一个目录demo,选中右键,创建作业,类型选择FlinkSql。创建完成后,就可以在作业下编写SQL及配置作业参数
在这里插入图片描述

语句编写与作业配置

当FlinkSQL编写完成后,即可进行作业的配置。在作业配置中,可以选择作业执行模式、Flink 集群、SavePoint策略等配置,对作业进行提交前的配置。

在这里插入图片描述
作业SQL

--创建源表source
CREATE TABLE source(id  BIGINT,name STRING,age INT
) WITH ('connector' = 'datagen'
);--创建结果表sink
CREATE  TABLE sink(id  BIGINT,name STRING,age INT
) WITH ('connector' = 'print'
);--将源表数据插入到结果表
INSERT INTO sink SELECT id, name, age from source;

语法检查

在这里插入图片描述

发布运行作业

保存后,选择执行SQL或者提交作业
在这里插入图片描述

查看作业运行情况

提交执行后,可以到运维中心查看作业的运行情况。
在这里插入图片描述
在这里插入图片描述

Dinky的其他功能服务

Catalog

Dinky可以利用MySQL持久化Flink元数据,只需要在FlinkSQL的作业配置中选择DefaultCatalog,即可使用MySQL来存储,否则Flink采用基于内存catalog

Mysql Catalog 持久化目前默认的Catalog为my_catalog,默认的FlinkSQLEnv为DefaultCatalog。

将元数据信息保存到 Mysql以后,可以查看MySQL元数据、使用Mysql Catalog,即在作业中无需再显式声明DDL 语句,如建表操作。

在这里插入图片描述
在这里插入图片描述

变量

1.局部变量

定义变量的语法如下:

key1 := value1;

定义及使用变量

-- 定义变量
myKey := source;-- 使用变量
select * from ${myKey};

还需要在作业配置中开启全局变量
在这里插入图片描述

2.全局变量
在这里插入图片描述
执行使用全局变量

-- 使用全局变量
select * from ${MyVariable};

3.查看变量

-- 定义变量
myKey := source;-- 查看单个变量
SHOW FRAGMENT myKey;-- 查看所有变量
SHOW FRAGMENTS;

FlinkSQL环境

在执行 FlinkSQL 时,会先执行FlinkSqlEnv 内的语句。适用于所有作业的SET、DDL语法统一管理的场景。

新建作业,类型选择FlinkSqlEnv
在这里插入图片描述
定义一些执行环境变量
在这里插入图片描述
使用自定义FlinkSQL环境
在这里插入图片描述

数据源

创建数据源

在这里插入图片描述

配置参考示例:
在这里插入图片描述

Flink 连接配置:

避免私密信息泄露,同时作为全局变量复用连接配置,在FlinkSQL中可使用 ${名称} 来加载连接配置,如 ${ods}。说明:名称指的是英文唯一标识,即如图所示的名称。注意需要开启全局变量(原片段机制)

     'hostname' = 'localhost','port' = '3306','username' = 'root','password' = '123456','server-time-zone' = 'UTC'

Flink 连接模板:

Flink连接模板作用是为生成 FlinkSQL DDL而扩展的功能。

注意引用变量的前后逗号,使用此方式作业右侧必须开启全局变量${schemaName} 动态获取数据库,${tableName} 动态获取表名称
     'connector' = 'mysql-cdc','hostname' = 'localhost','port' = '3306','username' = 'root','password' = '123456','server-time-zone' = 'UTC','scan.incremental.snapshot.enabled' = 'true','debezium.snapshot.mode'='latest-offset'  ,'database-name' = '${schemaName}','table-name' = '${tableName}'

注意:

定义数据源的名称可以作为的变量键,定义数据源的Flink连接配置可以作为变量的值

在这里插入图片描述

元数据中心

当对数据源配置完成后,可以查看表的详细信息与对应的建表语句,查看建表语句功能很实用

具体操作: 数据开发->左侧点击 元数据->选中当前创建的数据源 -> 展开库 -> 右键单击 表名 -> 点击 SQL生成 -> 查看FlinkDDL
在这里插入图片描述
也可以在添加完数据源后,在元数据中心可以访问
在这里插入图片描述

这篇关于Dinky之安装部署与基本使用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/459686

相关文章

使用Redis快速实现共享Session登录的详细步骤

《使用Redis快速实现共享Session登录的详细步骤》在Web开发中,Session通常用于存储用户的会话信息,允许用户在多个页面之间保持登录状态,Redis是一个开源的高性能键值数据库,广泛用于... 目录前言实现原理:步骤:使用Redis实现共享Session登录1. 引入Redis依赖2. 配置R

使用Python的requests库调用API接口的详细步骤

《使用Python的requests库调用API接口的详细步骤》使用Python的requests库调用API接口是开发中最常用的方式之一,它简化了HTTP请求的处理流程,以下是详细步骤和实战示例,涵... 目录一、准备工作:安装 requests 库二、基本调用流程(以 RESTful API 为例)1.

使用Python开发一个Ditto剪贴板数据导出工具

《使用Python开发一个Ditto剪贴板数据导出工具》在日常工作中,我们经常需要处理大量的剪贴板数据,下面将介绍如何使用Python的wxPython库开发一个图形化工具,实现从Ditto数据库中读... 目录前言运行结果项目需求分析技术选型核心功能实现1. Ditto数据库结构分析2. 数据库自动定位3

Python yield与yield from的简单使用方式

《Pythonyield与yieldfrom的简单使用方式》生成器通过yield定义,可在处理I/O时暂停执行并返回部分结果,待其他任务完成后继续,yieldfrom用于将一个生成器的值传递给另一... 目录python yield与yield from的使用代码结构总结Python yield与yield

Go语言使用select监听多个channel的示例详解

《Go语言使用select监听多个channel的示例详解》本文将聚焦Go并发中的一个强力工具,select,这篇文章将通过实际案例学习如何优雅地监听多个Channel,实现多任务处理、超时控制和非阻... 目录一、前言:为什么要使用select二、实战目标三、案例代码:监听两个任务结果和超时四、运行示例五

python使用Akshare与Streamlit实现股票估值分析教程(图文代码)

《python使用Akshare与Streamlit实现股票估值分析教程(图文代码)》入职测试中的一道题,要求:从Akshare下载某一个股票近十年的财务报表包括,资产负债表,利润表,现金流量表,保存... 目录一、前言二、核心知识点梳理1、Akshare数据获取2、Pandas数据处理3、Matplotl

Java使用Thumbnailator库实现图片处理与压缩功能

《Java使用Thumbnailator库实现图片处理与压缩功能》Thumbnailator是高性能Java图像处理库,支持缩放、旋转、水印添加、裁剪及格式转换,提供易用API和性能优化,适合Web应... 目录1. 图片处理库Thumbnailator介绍2. 基本和指定大小图片缩放功能2.1 图片缩放的

Win10安装Maven与环境变量配置过程

《Win10安装Maven与环境变量配置过程》本文介绍Maven的安装与配置方法,涵盖下载、环境变量设置、本地仓库及镜像配置,指导如何在IDEA中正确配置Maven,适用于Java及其他语言项目的构建... 目录Maven 是什么?一、下载二、安装三、配置环境四、验证测试五、配置本地仓库六、配置国内镜像地址

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Python安装Pandas库的两种方法

《Python安装Pandas库的两种方法》本文介绍了三种安装PythonPandas库的方法,通过cmd命令行安装并解决版本冲突,手动下载whl文件安装,更换国内镜像源加速下载,最后建议用pipli... 目录方法一:cmd命令行执行pip install pandas方法二:找到pandas下载库,然后