【Math】高斯分布的乘积 Product of Guassian Distribution【附带Python实现】

本文主要是介绍【Math】高斯分布的乘积 Product of Guassian Distribution【附带Python实现】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【Math】高斯分布的乘积 Product of Guassian Distribution【附带Python实现】

文章目录

  • 【Math】高斯分布的乘积 Product of Guassian Distribution【附带Python实现】
    • 1.推导
    • 2. Code
    • Reference

结果先放在前面

Image

1.推导

在学习PEARL算法的时候,encoder的设计涉及到了高斯分布的乘积,对此有点疑问,进行推导补票。

首先高斯分布(Guassian Distribution)的概率密度函数为

f ( x ) = 1 2 π σ exp ⁡ ( − ( x − μ ) 2 2 σ 2 ) f(x) = \frac{1}{\sqrt{2\pi} \sigma} \exp({-\frac{(x-\mu)^2}{2\sigma^2}}) f(x)=2π σ1exp(2σ2(xμ)2)

通常将单位高斯分布记为 N ∼ ( 0 , 1 ) \mathcal{N}\sim(0,1) N(0,1),一般的高斯分布记为 N ∼ ( μ , σ ) \mathcal{N}\sim(\mu,\sigma) N(μ,σ),其中 μ \mu μ是高斯分布的均值(mean), σ \sigma σ是高斯分布的标准差(standard variance), σ 2 \sigma^2 σ2是高斯分布的方差(variance)。

​ 接下来推导高斯分布的乘积,假设有两个高斯分布,分别为
N 1 ∼ ( μ 1 , σ 1 ) , N 2 ∼ ( μ 2 , σ 2 ) \mathcal{N}_1\sim(\mu_1,\sigma_1),\mathcal{N}_2\sim(\mu_2,\sigma_2) N1(μ1,σ1),N2(μ2,σ2),那么其概率密度函数的乘积为

f 1 ( x ) f 2 ( x ) = 1 2 π σ 1 exp ⁡ ( − ( x − μ 1 ) 2 2 σ 1 2 ) × 1 2 π σ 2 exp ⁡ ( − ( x − μ 2 ) 2 2 σ 2 2 ) = 1 2 π σ 1 σ 2 exp ⁡ ( − ( x − μ 1 ) 2 2 σ 1 2 − ( x − μ 2 ) 2 2 σ 2 2 ) \begin{align} f_1(x)f_2(x) & = \frac{1}{\sqrt{2\pi}\sigma_1}\exp(-\frac{(x-\mu_1)^2}{2\sigma_1^2}) \times \frac{1}{\sqrt{2\pi}\sigma_2}\exp(-\frac{(x-\mu_2)^2}{2\sigma_2^2}) \\ & = \frac{1}{2\pi\sigma_1\sigma_2}\exp(-\frac{(x-\mu_1)^2}{2\sigma_1^2} - \frac{(x-\mu_2)^2}{2\sigma_2^2} ) \end{align} f1(x)f2(x)=2π σ11exp(2σ12(xμ1)2)×2π σ21exp(2σ22(xμ2)2)=2πσ1σ21exp(2σ12(xμ1)22σ22(xμ2)2)

我们单独分析指数部分,

( x − μ 1 ) 2 2 σ 1 2 + ( x − μ 2 ) 2 2 σ 2 2 = ( σ 1 2 + σ 2 2 ) x 2 − 2 x ( μ 2 σ 1 2 + μ 1 σ 2 2 ) + ( μ 1 2 σ 2 2 + μ 2 2 σ 1 2 ) 2 σ 1 2 σ 2 2 = x 2 − 2 x μ 2 σ 1 2 + μ 1 σ 2 2 σ 1 2 + σ 2 2 + μ 1 2 σ 2 2 + μ 2 2 σ 1 2 σ 1 2 + σ 2 2 2 σ 1 2 σ 2 2 σ 1 2 + σ 2 2 = ( x − μ 2 σ 1 2 + μ 1 σ 2 2 σ 1 2 + σ 2 2 ) 2 + μ 1 2 σ 2 2 + μ 2 2 σ 1 2 σ 1 2 + σ 2 2 − ( μ 2 σ 1 2 + μ 1 σ 2 2 σ 1 2 + σ 2 2 ) 2 2 σ 1 2 σ 2 2 σ 1 2 + σ 2 2 = ( x − μ 2 σ 1 2 + μ 1 σ 2 2 σ 1 2 + σ 2 2 ) 2 2 σ 1 2 σ 2 2 σ 1 2 + σ 2 2 + μ 1 2 σ 2 2 + μ 2 2 σ 1 2 σ 1 2 + σ 2 2 − ( μ 2 σ 1 2 + μ 1 σ 2 2 σ 1 2 + σ 2 2 ) 2 2 σ 1 2 σ 2 2 σ 1 2 + σ 2 2 \begin{align} \frac{(x-\mu_1)^2}{2\sigma_1^2} + \frac{(x-\mu_2)^2}{2\sigma_2^2} & = \frac{(\sigma_1^2 + \sigma_2^2)x^2 - 2x(\mu_2\sigma_1^2 + \mu_1\sigma_2^2) + (\mu_1^2\sigma_2^2 + \mu_2^2\sigma_1^2) }{2\sigma_1^2\sigma_2^2} \\ & = \frac{ x^2 - 2x\frac{\mu_2\sigma_1^2 + \mu_1\sigma_2^2}{\sigma_1^2+\sigma_2^2} + \frac{\mu_1^2\sigma_2^2 + \mu_2^2\sigma_1^2}{\sigma_1^2+\sigma_2^2} }{ \frac{2\sigma_1^2\sigma_2^2}{\sigma_1^2+\sigma_2^2}} \\ & = \frac{ (x-\frac{\mu_2\sigma_1^2 + \mu_1\sigma_2^2}{\sigma_1^2+\sigma_2^2})^2 + \frac{\mu_1^2\sigma_2^2 + \mu_2^2\sigma_1^2}{\sigma_1^2+\sigma_2^2} - (\frac{\mu_2\sigma_1^2 + \mu_1\sigma_2^2}{\sigma_1^2+\sigma_2^2})^2 }{ \frac{2\sigma_1^2\sigma_2^2}{\sigma_1^2+\sigma_2^2} } \\ & = \frac{(x-\frac{\mu_2\sigma_1^2 + \mu_1\sigma_2^2}{\sigma_1^2+\sigma_2^2})^2}{\frac{2\sigma_1^2\sigma_2^2}{\sigma_1^2+\sigma_2^2}} + \frac{\frac{\mu_1^2\sigma_2^2 + \mu_2^2\sigma_1^2}{\sigma_1^2+\sigma_2^2} - (\frac{\mu_2\sigma_1^2 + \mu_1\sigma_2^2}{\sigma_1^2+\sigma_2^2})^2}{\frac{2\sigma_1^2\sigma_2^2}{\sigma_1^2+\sigma_2^2}} \end{align} 2σ12(xμ1)2+2σ22(xμ2)2=2σ12σ22(σ12+σ22)x22x(μ2σ12+μ1σ22)+(μ12σ22+μ22σ12)=σ12+σ222σ12σ22x22xσ12+σ22μ2σ12+μ1σ22+σ12+σ22μ12σ22+μ22σ12=σ12+σ222σ12σ22(xσ12+σ22μ2σ12+μ1σ22)2+σ12+σ22μ12σ22+μ22σ12(σ12+σ22μ2σ12+μ1σ22)2=σ12+σ222σ12σ22(xσ12+σ22μ2σ12+μ1σ22)2+σ12+σ222σ12σ22σ12+σ22μ12σ22+μ22σ12(σ12+σ22μ2σ12+μ1σ22)2

继续化简上面的常数部分

μ 1 2 σ 2 2 + μ 2 2 σ 1 2 σ 1 2 + σ 2 2 − ( μ 2 σ 1 2 + μ 1 σ 2 2 σ 1 2 + σ 2 2 ) 2 2 σ 1 2 σ 2 2 σ 1 2 + σ 2 2 = ( μ 1 2 σ 2 2 + μ 2 2 σ 1 2 ) ( σ 1 2 + σ 2 2 ) + ( μ 2 σ 1 2 + μ 1 σ 2 2 ) 2 2 σ 1 2 σ 2 2 ( σ 1 2 + σ 2 2 ) = ( μ 1 − μ 2 ) 2 2 ( σ 1 2 + σ 2 2 ) \begin{align} \frac{\frac{\mu_1^2\sigma_2^2 + \mu_2^2\sigma_1^2}{\sigma_1^2+\sigma_2^2} - (\frac{\mu_2\sigma_1^2 + \mu_1\sigma_2^2}{\sigma_1^2+\sigma_2^2})^2}{\frac{2\sigma_1^2\sigma_2^2}{\sigma_1^2+\sigma_2^2}} & = \frac{(\mu_1^2\sigma_2^2 + \mu_2^2\sigma_1^2)(\sigma_1^2 + \sigma_2^2) + (\mu_2\sigma_1^2 + \mu_1\sigma_2^2)^2}{2\sigma_1^2\sigma_2^2(\sigma_1^2+\sigma_2^2)} \\ & = \frac{(\mu_1 - \mu_2)^2}{2(\sigma_1^2 + \sigma_2^2)} \end{align} σ12+σ222σ12σ22σ12+σ22μ12σ22+μ22σ12(σ12+σ22μ2σ12+μ1σ22)2=2σ12σ22(σ12+σ22)(μ12σ22+μ22σ12)(σ12+σ22)+(μ2σ12+μ1σ22)2=2(σ12+σ22)(μ1μ2)2

则我们可以将概率密度函数的乘积写为

f 1 ( x ) f 2 ( x ) = 1 2 π σ 1 σ 2 exp ⁡ ( − ( x − μ 1 ) 2 2 σ 1 2 − ( x − μ 2 ) 2 2 σ 2 2 ) = 1 2 π σ 1 σ 2 exp ⁡ ( − ( x − μ 2 σ 1 2 + μ 1 σ 2 2 σ 1 2 + σ 2 2 ) 2 2 σ 1 2 σ 2 2 σ 1 2 + σ 2 2 − ( μ 1 − μ 2 ) 2 2 ( σ 1 2 + σ 2 2 ) ) = 1 2 π ( σ 1 2 + σ 2 2 ) exp ⁡ ( − ( μ 1 − μ 2 ) 2 2 ( σ 1 2 + σ 2 2 ) ) ⏟ S g × 1 2 π σ 1 2 σ 2 2 σ 1 2 + σ 2 2 exp ⁡ ( − ( x − μ 2 σ 1 2 + μ 1 σ 2 2 σ 1 2 + σ 2 2 ) 2 2 σ 1 2 σ 2 2 σ 1 2 + σ 2 2 ) = S g × 1 2 π μ exp ⁡ ( − ( x − μ ) 2 2 σ ) \begin{align} f_1(x)f_2(x) & =\frac{1}{2\pi\sigma_1\sigma_2}\exp(-\frac{(x-\mu_1)^2}{2\sigma_1^2} - \frac{(x-\mu_2)^2}{2\sigma_2^2} ) \\ & = \frac{1}{2\pi\sigma_1\sigma_2} \exp( - \frac{(x-\frac{\mu_2\sigma_1^2 + \mu_1\sigma_2^2}{\sigma_1^2+\sigma_2^2})^2}{\frac{2\sigma_1^2\sigma_2^2}{\sigma_1^2+\sigma_2^2}} - \frac{(\mu_1 - \mu_2)^2}{2(\sigma_1^2 + \sigma_2^2)} ) \\ & = \underbrace{\frac{1}{\sqrt{2\pi(\sigma_1^2+\sigma_2^2)}}\exp(-\frac{(\mu_1 - \mu_2)^2}{2(\sigma_1^2 + \sigma_2^2)})}_{S_g} \times \frac{1}{\sqrt{2\pi \frac{\sigma_1^2\sigma_2^2}{\sigma_1^2+\sigma_2^2} }}\exp(- \frac{(x-\frac{\mu_2\sigma_1^2 + \mu_1\sigma_2^2}{\sigma_1^2+\sigma_2^2})^2}{\frac{2\sigma_1^2\sigma_2^2}{\sigma_1^2+\sigma_2^2}}) \\ & = S_g\times \frac{1}{\sqrt{2\pi \mu}} \exp(-\frac{(x-\mu)^2}{2\sigma}) \end{align} f1(x)f2(x)=2πσ1σ21exp(2σ12(xμ1)22σ22(xμ2)2)=2πσ1σ21exp(σ12+σ222σ12σ22(xσ12+σ22μ2σ12+μ1σ22)22(σ12+σ22)(μ1μ2)2)=Sg 2π(σ12+σ22) 1exp(2(σ12+σ22)(μ1μ2)2)×2πσ12+σ22σ12σ22 1exp(σ12+σ222σ12σ22(xσ12+σ22μ2σ12+μ1σ22)2)=Sg×2πμ 1exp(2σ(xμ)2)

其中

μ = μ 2 σ 1 2 + μ 1 σ 2 2 σ 1 2 + σ 2 2 , σ 2 = σ 1 2 σ 2 2 σ 1 2 + σ 2 2 \mu = \frac{\mu_2\sigma_1^2 + \mu_1\sigma_2^2}{\sigma_1^2+\sigma_2^2}, \sigma^2 =\frac{\sigma_1^2\sigma_2^2}{\sigma_1^2+\sigma_2^2} μ=σ12+σ22μ2σ12+μ1σ22,σ2=σ12+σ22σ12σ22

所以两个高斯分布的乘积仍然为高斯分布,且均值为 μ \mu μ,方差为 σ 2 \sigma^2 σ2 S g S_g Sg被称为缩放因子,即相乘后的分布函数为一个被压缩或者放大的高斯分布,相乘后的概率密度的积分不等于1,但其方差和均值性质不变,仍然符合高斯分布。

​ 拓展到多个高斯分布相乘的结果,可以得到

μ = μ 1 σ 2 2 σ 3 2 + μ 2 σ 1 2 σ 3 2 + μ 3 σ 1 2 σ 2 2 σ 1 2 σ 2 2 + σ 1 2 σ 3 2 + σ 2 2 σ 3 2 , σ 2 = σ 1 2 σ 2 2 σ 3 2 σ 1 2 σ 2 2 + σ 1 2 σ 3 2 + σ 2 2 σ 3 2 \mu = \frac{\mu_1\sigma_2^2\sigma_3^2 + \mu_2\sigma_1^2\sigma_3^2 + \mu_3\sigma_1^2\sigma_2^2 }{\sigma_1^2\sigma_2^2 + \sigma_1^2\sigma_3^2 + \sigma_2^2\sigma_3^2}, \sigma^2 = \frac{\sigma_1^2\sigma_2^2\sigma_3^2}{\sigma_1^2\sigma_2^2 + \sigma_1^2\sigma_3^2 + \sigma_2^2\sigma_3^2} μ=σ12σ22+σ12σ32+σ22σ32μ1σ22σ32+μ2σ12σ32+μ3σ12σ22,σ2=σ12σ22+σ12σ32+σ22σ32σ12σ22σ32

2. Code

import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import norm# 设定均值和标准差
mean = np.array([1, 2, 3])
var = np.array([1, 3, 5])x = np.linspace(-15, 15, 1000)
pdfs = []
# 计算高斯分布的概率密度函数(Probability Density Function, PDF)
for mu, sigma in zip(mean, var):pdfs.append(norm.pdf(x, mu, np.sqrt(sigma)))# 绘制高斯分布曲线
plt.plot(x, pdfs[0], 'r-', linewidth=2, label='mean=1, var=1')
plt.fill_between(x, pdfs[0], color='red', alpha=0.5)
plt.plot(x, pdfs[1], 'g-', linewidth=2, label='mean=2, var=3')
plt.fill_between(x, pdfs[1], color='g', alpha=0.5)
plt.plot(x, pdfs[2], 'b-', linewidth=2, label='mean=3, var=5')
plt.fill_between(x, pdfs[2], color='b', alpha=0.5)# 计算三个高斯分布的乘积
prod_mean = 1.0 / np.sum(np.reciprocal(mean), axis=0)
prod_var = prod_mean * np.sum(mean / var, axis=0)
pdf = norm.pdf(x, prod_mean, np.sqrt(prod_var))
plt.plot(x, pdf, 'k--', linewidth=2, label='product')
plt.fill_between(x, pdf, color='y', alpha=0.7)# 添加标签和标题
plt.xlabel('Value')
plt.ylabel('Probability Density')
plt.title('Normal Distribution')
plt.legend()# 显示图形
plt.show()

Reference

https://blog.csdn.net/chaosir1991/article/details/106910668

这篇关于【Math】高斯分布的乘积 Product of Guassian Distribution【附带Python实现】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/458921

相关文章

Spring StateMachine实现状态机使用示例详解

《SpringStateMachine实现状态机使用示例详解》本文介绍SpringStateMachine实现状态机的步骤,包括依赖导入、枚举定义、状态转移规则配置、上下文管理及服务调用示例,重点解... 目录什么是状态机使用示例什么是状态机状态机是计算机科学中的​​核心建模工具​​,用于描述对象在其生命

Spring Boot 结合 WxJava 实现文章上传微信公众号草稿箱与群发

《SpringBoot结合WxJava实现文章上传微信公众号草稿箱与群发》本文将详细介绍如何使用SpringBoot框架结合WxJava开发工具包,实现文章上传到微信公众号草稿箱以及群发功能,... 目录一、项目环境准备1.1 开发环境1.2 微信公众号准备二、Spring Boot 项目搭建2.1 创建

IntelliJ IDEA2025创建SpringBoot项目的实现步骤

《IntelliJIDEA2025创建SpringBoot项目的实现步骤》本文主要介绍了IntelliJIDEA2025创建SpringBoot项目的实现步骤,文中通过示例代码介绍的非常详细,对大家... 目录一、创建 Spring Boot 项目1. 新建项目2. 基础配置3. 选择依赖4. 生成项目5.

使用Python删除Excel中的行列和单元格示例详解

《使用Python删除Excel中的行列和单元格示例详解》在处理Excel数据时,删除不需要的行、列或单元格是一项常见且必要的操作,本文将使用Python脚本实现对Excel表格的高效自动化处理,感兴... 目录开发环境准备使用 python 删除 Excphpel 表格中的行删除特定行删除空白行删除含指定

Linux下删除乱码文件和目录的实现方式

《Linux下删除乱码文件和目录的实现方式》:本文主要介绍Linux下删除乱码文件和目录的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux下删除乱码文件和目录方法1方法2总结Linux下删除乱码文件和目录方法1使用ls -i命令找到文件或目录

SpringBoot+EasyExcel实现自定义复杂样式导入导出

《SpringBoot+EasyExcel实现自定义复杂样式导入导出》这篇文章主要为大家详细介绍了SpringBoot如何结果EasyExcel实现自定义复杂样式导入导出功能,文中的示例代码讲解详细,... 目录安装处理自定义导出复杂场景1、列不固定,动态列2、动态下拉3、自定义锁定行/列,添加密码4、合并

mybatis执行insert返回id实现详解

《mybatis执行insert返回id实现详解》MyBatis插入操作默认返回受影响行数,需通过useGeneratedKeys+keyProperty或selectKey获取主键ID,确保主键为自... 目录 两种方式获取自增 ID:1. ​​useGeneratedKeys+keyProperty(推

Spring Boot集成Druid实现数据源管理与监控的详细步骤

《SpringBoot集成Druid实现数据源管理与监控的详细步骤》本文介绍如何在SpringBoot项目中集成Druid数据库连接池,包括环境搭建、Maven依赖配置、SpringBoot配置文件... 目录1. 引言1.1 环境准备1.2 Druid介绍2. 配置Druid连接池3. 查看Druid监控

Python通用唯一标识符模块uuid使用案例详解

《Python通用唯一标识符模块uuid使用案例详解》Pythonuuid模块用于生成128位全局唯一标识符,支持UUID1-5版本,适用于分布式系统、数据库主键等场景,需注意隐私、碰撞概率及存储优... 目录简介核心功能1. UUID版本2. UUID属性3. 命名空间使用场景1. 生成唯一标识符2. 数

Linux在线解压jar包的实现方式

《Linux在线解压jar包的实现方式》:本文主要介绍Linux在线解压jar包的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux在线解压jar包解压 jar包的步骤总结Linux在线解压jar包在 Centos 中解压 jar 包可以使用 u