使用 mtcnn 和 facenet 进行人脸识别

2023-12-05 19:20

本文主要是介绍使用 mtcnn 和 facenet 进行人脸识别,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、前言

人脸识别目前有比较多的应用了,比如门禁系统,手机的人脸解锁等等,今天,我们也来实现一个简单的人脸识别。

二、思维导图

三、详细步骤

3.1 准备

3.1.1 facenet 权重文件下载

下载地址:https://drive.google.com/drive/folders/1pwQ3H4aJ8a6yyJHZkTwtjcL4wYWQb7bn,下载 facenet_keras_weights.h5权重文件到本地。

3.1.2 依赖库安装

pip 安装库的时候如果太慢,设置软件源的地址为清华源,设置命令:

pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple
依赖库作用安装命令
OpenCV一个用于计算机视觉和图像处理的开源库。用于处理图像和视频。pip install opencv-python
mtcnn人脸检测的深度学习模型pip install mtcnn
tensorflow开源的机器学习框架pip install tensorflow
mysql-connector-python连接 mysql 数据库pip install mysql-connector-python
3.1.3 目录结构说明
├─docs 存放文档
├─encodings 存放本地图像特征值
├─facenet_model 存放 facenet 权重文件
├─font 存放简体字体
├─test_faces 测试集
├─train_faces 训练集
├─src 存放代码

3.2 训练人脸

3.2.1 人脸训练集准备

train_faces 文件夹下新建 hu_ge文件夹,然后从社交网络上获取胡歌图片放进去,作为训练集。

一张人脸生成的特征值显然是不够的,因此我们需要多张人脸,不考虑过拟合的情况下,人脸越多越精确。

3.2.2 加载模型

这边加载模型是 ResNetV2,没有引用库,而是手动去构建神经网络的,我尝试去直接使用 ResNet 库没成功,部分构建代码:

def inception_resnet_v2():inputs = Input(shape=(160, 160, 3))# 第一层是一个卷积层,应用了 32 个大小为 3x3 的滤波器x = Conv2D(32, 3, strides=2, padding='valid', use_bias=False, name= 'Conv2d_1a_3x3') (inputs)# 对输入进行批量归一化x = BatchNormalization(axis=3, momentum=0.995, epsilon=0.001, scale=False, name='Conv2d_1a_3x3_BatchNorm')(x)# 应用 ReLU 激活函数x = Activation('relu', name='Conv2d_1a_3x3_Activation')(x)x = Conv2D(32, 3, strides=1, padding='valid', use_bias=False, name= 'Conv2d_2a_3x3') (x)x = BatchNormalization(axis=3, momentum=0.995, epsilon=0.001, scale=False, name='Conv2d_2a_3x3_BatchNorm')(x)x = Activation('relu', name='Conv2d_2a_3x3_Activation')(x)x = Conv2D(64, 3, strides=1, padding='same', use_bias=False, name= 'Conv2d_2b_3x3') (x)x = BatchNormalization(axis=3, momentum=0.995, epsilon=0.001, scale=False, name='Conv2d_2b_3x3_BatchNorm')(x)x = Activation('relu', name='Conv2d_2b_3x3_Activation')(x)x = MaxPooling2D(3, strides=2, name='MaxPool_3a_3x3')(x)x = Conv2D(80, 1, strides=1, padding='valid', use_bias=False, name= 'Conv2d_3b_1x1') (x)x = BatchNormalization(axis=3, momentum=0.995, epsilon=0.001, scale=False, name='Conv2d_3b_1x1_BatchNorm')(x)x = Activation('relu', name='Conv2d_3b_1x1_Activation')(x)x = Conv2D(192, 3, strides=1, padding='valid', use_bias=False, name= 'Conv2d_4a_3x3') (x)x = BatchNormalization(axis=3, momentum=0.995, epsilon=0.001, scale=False, name='Conv2d_4a_3x3_BatchNorm')(x)x = Activation('relu', name='Conv2d_4a_3x3_Activation')(x)x = Conv2D(256, 3, strides=2, padding='valid', use_bias=False, name= 'Conv2d_4b_3x3') (x)x = BatchNormalization(axis=3, momentum=0.995, epsilon=0.001, scale=False, name='Conv2d_4b_3x3_BatchNorm')(x)x = Activation('relu', name='Conv2d_4b_3x3_Activation')(x)

这边就涉及到神经网络比较底层的知识,我也不太懂,我就直接使用了。
加载完模型后,加载 facenet 权重文件。
最后再加载 mtcnn 来识别人脸。

face_encoder = inception_resnet_v2()
facenet_weight_path = "../facenet_model/facenet_keras_weights.h5"
face_encoder.load_weights(facenet_weight_path)face_detector = mtcnn.MTCNN()
3.2.3 读取图片、转换颜色空间

OpenCV 读取图片默认是以 BGR 颜色空间,如果我们要给 mtcnn识别人脸,要先转为 RGB 颜色空间。

# 读取图片
img_BGR = cv2.imread(image_path)
# 将一幅图像从 BGR(蓝绿红)颜色空间转换为 RGB(红绿蓝)颜色空间
img_RGB = cv2.cvtColor(img_BGR, cv2.COLOR_BGR2RGB)
3.2.4 mtcnn 识别人脸具体位置

MTCNN 是一种检测图像上的人脸和面部标志的神经网络。

x = face_detector.detect_faces(img_RGB)
print(x)

mtcnn 会生成人脸框的坐标和人脸上五个关键点的坐标,分别是左眼,右眼,鼻子,嘴唇的左边界,嘴唇的右边界。

{'box': [468, 98, 195, 249],'confidence': 0.9999933242797852,'keypoints': {'left_eye': (534, 190),'right_eye': (624, 186),'nose': (590, 236),'mouth_left': (549, 294),'mouth_right': (620, 291)}
}

显示一下:

# 人脸的框的左上角坐标和宽高
x1, y1, width, height = x[0]['box']
x1, y1 = abs(x1), abs(y1)
x2, y2 = x1 + width, y1 + height
# 绘制人脸框
cv2.rectangle(img_BGR, (x1, y1), (x2, y2), (0, 255, 0), 2)
# 绘制人脸关键点
for keypoint, coordinates in x[0]['keypoints'].items():cv2.circle(img_BGR, coordinates, 2, (0, 0, 255), -1)
# 显示
cv2.imshow('Detected Face', img_BGR)
cv2.waitKey(0)
cv2.destroyAllWindows()

# 裁剪出人脸部分
face = img_RGB[y1:y2, x1:x2]
3.2.5 归一化、设置图片大小、生成图像特征值

归一化,将像素值从 [0, 255] 归一化到 [0, 1],如果训练的特征分布和测试的差异很大,那么对输入数据进行归一化,可以在训练和测试过程中保持一致的特征分布。

def normalize(img):"""归一化处理:将数据缩放到均值为 0,标准差为 1 的标准正态分布像素值通常是在 0 到 255 的范围内。例如,将像素值从 [0, 255] 归一化到 [0, 1]。:param img::return: 归一化结果"""# 获取所有像素的平均值,标准差mean, std = img.mean(), img.std()return (img - mean) / std

face_encoder.predict(face_d)[0]这个函数可以对输入的人脸图像进行特征提取,我们这边只获取单张人脸的特征,所以取下标 0。

face = normalize(face)# 重新设置大小
face = cv2.resize(face, required_shape)
# 扩展(增加)数组的维度
face_d = np.expand_dims(face, axis=0)
encode = face_encoder.predict(face_d)[0]
encodes.append(encode)

encode 只是一张图像的特征值,我们要训练很多张才能实现泛化效果比较好的模型,因此用 encodes 存放每一张图像的特征值。

3.2.6 特征求和、存放到数据库中
if encodes:# 特征求和# 计算每一列的总和encode = np.sum(encodes, axis=0)# 将特征向量标准化为单位向量encode = l2_normalizer.transform(np.expand_dims(encode, axis=0))[0]image_feature = base64.b64encode(encode).decode('utf-8')# 获取标签中文名 hu_ge -> 胡歌label_chinese_name = get_label_chinese_name(face_names)encoding_dict[face_names] = encodesave_image_feature(face_names, label_chinese_name, image_feature)

3.3 测试人脸

将需要测试的人脸图片放在 test_faces 文件夹下,这四张都是全新的图片,模型不知道的,这样才可以进行预测。

也是对每一张图像生成人脸的特征值,然后和数据库中的特征值进行比较。

dist = cosine(input_feature, image_feature)

**在机器学习中,欧氏距离用于特征空间中样本之间的相似性度量,通过 ****cosine**函数计算相似度,只要小于相似度阈值,我们就认为属于同一张人脸。

原来我是设置成 0.5,可能由于训练的样本数太少,不是冯提莫的图片也会被认为是冯提莫,造成错误识别,它的值是 0.480.49 这样,后面我改成 0.4 就好了。
冯提莫和胡歌的人脸特征我提前训练好了,因此这边可以识别到,杨幂和宋轶没有训练,所以识别不到,显示未知。

四、参考资料

  • facenet
  • mtcnn
  • Face Detection using MTCNN

这篇关于使用 mtcnn 和 facenet 进行人脸识别的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/458809

相关文章

Python使用FFmpeg实现高效音频格式转换工具

《Python使用FFmpeg实现高效音频格式转换工具》在数字音频处理领域,音频格式转换是一项基础但至关重要的功能,本文主要为大家介绍了Python如何使用FFmpeg实现强大功能的图形化音频转换工具... 目录概述功能详解软件效果展示主界面布局转换过程截图完成提示开发步骤详解1. 环境准备2. 项目功能结

SpringBoot使用ffmpeg实现视频压缩

《SpringBoot使用ffmpeg实现视频压缩》FFmpeg是一个开源的跨平台多媒体处理工具集,用于录制,转换,编辑和流式传输音频和视频,本文将使用ffmpeg实现视频压缩功能,有需要的可以参考... 目录核心功能1.格式转换2.编解码3.音视频处理4.流媒体支持5.滤镜(Filter)安装配置linu

Redis中的Lettuce使用详解

《Redis中的Lettuce使用详解》Lettuce是一个高级的、线程安全的Redis客户端,用于与Redis数据库交互,Lettuce是一个功能强大、使用方便的Redis客户端,适用于各种规模的J... 目录简介特点连接池连接池特点连接池管理连接池优势连接池配置参数监控常用监控工具通过JMX监控通过Pr

apache的commons-pool2原理与使用实践记录

《apache的commons-pool2原理与使用实践记录》ApacheCommonsPool2是一个高效的对象池化框架,通过复用昂贵资源(如数据库连接、线程、网络连接)优化系统性能,这篇文章主... 目录一、核心原理与组件二、使用步骤详解(以数据库连接池为例)三、高级配置与优化四、典型应用场景五、注意事

使用Python实现Windows系统垃圾清理

《使用Python实现Windows系统垃圾清理》Windows自带的磁盘清理工具功能有限,无法深度清理各类垃圾文件,所以本文为大家介绍了如何使用Python+PyQt5开发一个Windows系统垃圾... 目录一、开发背景与工具概述1.1 为什么需要专业清理工具1.2 工具设计理念二、工具核心功能解析2.

Linux系统之stress-ng测压工具的使用

《Linux系统之stress-ng测压工具的使用》:本文主要介绍Linux系统之stress-ng测压工具的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、理论1.stress工具简介与安装2.语法及参数3.具体安装二、实验1.运行8 cpu, 4 fo

Java使用MethodHandle来替代反射,提高性能问题

《Java使用MethodHandle来替代反射,提高性能问题》:本文主要介绍Java使用MethodHandle来替代反射,提高性能问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录一、认识MethodHandle1、简介2、使用方式3、与反射的区别二、示例1、基本使用2、(重要)

使用C#删除Excel表格中的重复行数据的代码详解

《使用C#删除Excel表格中的重复行数据的代码详解》重复行是指在Excel表格中完全相同的多行数据,删除这些重复行至关重要,因为它们不仅会干扰数据分析,还可能导致错误的决策和结论,所以本文给大家介绍... 目录简介使用工具C# 删除Excel工作表中的重复行语法工作原理实现代码C# 删除指定Excel单元

MySQL 事务的概念及ACID属性和使用详解

《MySQL事务的概念及ACID属性和使用详解》MySQL通过多线程实现存储工作,因此在并发访问场景中,事务确保了数据操作的一致性和可靠性,下面通过本文给大家介绍MySQL事务的概念及ACID属性和... 目录一、什么是事务二、事务的属性及使用2.1 事务的 ACID 属性2.2 为什么存在事务2.3 事务

使用Python实现网页表格转换为markdown

《使用Python实现网页表格转换为markdown》在日常工作中,我们经常需要从网页上复制表格数据,并将其转换成Markdown格式,本文将使用Python编写一个网页表格转Markdown工具,需... 在日常工作中,我们经常需要从网页上复制表格数据,并将其转换成Markdown格式,以便在文档、邮件或