t-SNE方法:

2023-12-05 19:12
文章标签 方法 sne

本文主要是介绍t-SNE方法:,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

使用t-SNE时,除了指定你想要降维的维度(参数n_components),另一个重要的参数是困惑度(Perplexity,参数perplexity)

困惑度:

困惑度大致表示如何在局部或者全局位面上平衡关注点,再说的具体一点就是关于对每个点周围邻居数量猜测。困惑度对最终成图有着复杂的影响。

  1. 低困惑度对应的是局部视角,要把自己想象成一只蚂蚁,在数据所在的流形上一个点一个点地探索。
  2. 高困惑度对应的是全局视角,要把自己想象成上帝。

参考:t-SNE:最好的降维方法之一 - 知乎 (zhihu.com)

具体介绍:

t-SNE(t-分布随机邻域嵌入,T-distributed Stochastic Neighbor Embedding)是一种流行的机器学习算法,主要用于降维。该算法特别适用于将高维数据映射到低维空间,如2维或3维,以便于可视化和分析。可以从具有数百甚至数千个维度的数据中创建引人注目的两维“地图”

t-SNE(t-DistributedStochastic Neighbor Embedding,T 分布随机近邻嵌入)是一种可以把高维数据降到二维或三维的降维技术。


t-SNE通过在低维空间中模拟高维数据分布,尽可能保留原始数据集中的局部结构。它是一种非线性降维技术,其核心思想是保持相似的数据点在嵌入后的空间中仍然彼此靠近,同时在高维空间中相隔较远的点在嵌入后也保持距离。

目标:

在高维空间中获取一组点,并在低维空间(通常是 2D 平面)中找到这些点的忠实表示。该算法是非线性的,可适应底层数据,在不同区域执行不同的变换。这些差异可能是造成混淆的主要根源。

t-SNE的第二个特点是一个可调的参数,即“困惑性”,它(松散地)表示如何平衡数据的局部和全局方面之间的注意力。从某种意义上说,该参数是对每个点具有的近邻数量的猜测。困惑度值对生成的图片具有复杂的影响。原始论文说,“SNE的性能对困惑度的变化相当鲁棒,典型值在5到50之间。但故事比这更微妙。从t-SNE中获得最大收益可能意味着分析具有不同困惑度的多个图。


算法的主要步骤包括:

  1. 数据初始化:为数据集中的每个点分配一个随机的低维表示
  2. 相似度计算:计算高维空间中所有点对之间的相似度,通常使用高斯分布来表示这种相似性。
  3. 距离矩阵构建:根据相似度构建一个距离矩阵,这个矩阵描述了数据点在低维空间中的相对位置。
  4. 概率分布学习:使用距离矩阵,通过极大似然估计学习一个用于生成低维表示的概率模型。
  5. 优化:使用梯度下降法优化概率模型,迭代地更新低维表示,直到收敛。
  6. 结果评估:使用一个称为“困惑度”的指标来评估最终嵌入的质量。

t-SNE在处理复杂数据集时表现出色,尤其是在数据可视化和发现数据的内在结构方面。但是,它也有一些局限性,比如计算复杂度高,对超参数(如困惑度)的选择敏感,以及在大数据集上可能需要大量的计算资源。


在R语言中,可以使用tsne包来进行t-SNE的计算和可视化。在Python中,sklearn.manifold库提供了t-SNE的实现,可以方便地对高维数据进行降维和可视化。


需要注意的是,t-SNE并不是唯一的选择。对于那些需要更快速处理且对内存要求较低的大数据集,可以选择UMAP(Uniform Manifold Approximation and Projection)作为替代方法,它也是一种非线性降维技术,特别适合于大规模数据集的降维和可视化。

与PCA方法的不同点:

参考:解读文献里的那些图——t-SNE散点图 - 知乎 (zhihu.com)

如果用 PCA 降维进行可视化,会出现所谓的“拥挤现象”。

相比于PCA,t-SNE更加注重保留原始数据的局部特征,这意味着高维数据空间中距离相近的点投影到低维中仍然相近,通过t-SNE处理同样能生成漂亮的可视化。

参数:

相关参考链接:

【1】如何有效使用t-SNE (distill.pub)

【2】t-SNE高维数据可视化(python)_t-sne可视化python-CSDN博客

【3】从SNE到t-SNE再到LargeVis (bindog.github.io)

【4】论文笔记:Visualizing data using t-SNE | 胡东瑶的小屋 (psubnwell.github.io)

【5】t-SNE:最好的降维方法之一 - 知乎 (zhihu.com)

【6】GitHub 上 - tensorflow/tfjs-tsne

这篇关于t-SNE方法:的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/458786

相关文章

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

MySQL数据库双机热备的配置方法详解

《MySQL数据库双机热备的配置方法详解》在企业级应用中,数据库的高可用性和数据的安全性是至关重要的,MySQL作为最流行的开源关系型数据库管理系统之一,提供了多种方式来实现高可用性,其中双机热备(M... 目录1. 环境准备1.1 安装mysql1.2 配置MySQL1.2.1 主服务器配置1.2.2 从

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Python版本与package版本兼容性检查方法总结

《Python版本与package版本兼容性检查方法总结》:本文主要介绍Python版本与package版本兼容性检查方法的相关资料,文中提供四种检查方法,分别是pip查询、conda管理、PyP... 目录引言为什么会出现兼容性问题方法一:用 pip 官方命令查询可用版本方法二:conda 管理包环境方法

Linux云服务器手动配置DNS的方法步骤

《Linux云服务器手动配置DNS的方法步骤》在Linux云服务器上手动配置DNS(域名系统)是确保服务器能够正常解析域名的重要步骤,以下是详细的配置方法,包括系统文件的修改和常见问题的解决方案,需要... 目录1. 为什么需要手动配置 DNS?2. 手动配置 DNS 的方法方法 1:修改 /etc/res

JavaScript对象转数组的三种方法实现

《JavaScript对象转数组的三种方法实现》本文介绍了在JavaScript中将对象转换为数组的三种实用方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友... 目录方法1:使用Object.keys()和Array.map()方法2:使用Object.entr

SpringBoot中ResponseEntity的使用方法举例详解

《SpringBoot中ResponseEntity的使用方法举例详解》ResponseEntity是Spring的一个用于表示HTTP响应的全功能对象,它可以包含响应的状态码、头信息及响应体内容,下... 目录一、ResponseEntity概述基本特点:二、ResponseEntity的基本用法1. 创

java中判断json key是否存在的几种方法

《java中判断jsonkey是否存在的几种方法》在使用Java处理JSON数据时,如何判断某一个key是否存在?本文就来介绍三种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的... 目http://www.chinasem.cn录第一种方法是使用 jsONObject 的 has 方法

java中ssh2执行多条命令的四种方法

《java中ssh2执行多条命令的四种方法》本文主要介绍了java中ssh2执行多条命令的四种方法,包括分号分隔、管道分隔、EOF块、脚本调用,可确保环境配置生效,提升操作效率,具有一定的参考价值,感... 目录1 使用分号隔开2 使用管道符号隔开3 使用写EOF的方式4 使用脚本的方式大家平时有没有遇到自