高并发热点缓存数据可能出现问题及解决方案

2023-12-05 17:08

本文主要是介绍高并发热点缓存数据可能出现问题及解决方案,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

背景

电商场景促销活动的会场页由于经常集中在某个时间点进行“秒杀”促销,这些页面的QPS(服务器每秒可以处理的请求量)往往特别高,数据库通常无法直接支撑如此高QPS的请求,常见的解决方案是让大部分相同信息的请求都尽可能地压在缓存(cache)上来缓解数据库(DB)的压力,从而尽可能地去满足高并发访问的诉求(如图2-1所示)。

 

这里写图片描述

 

 

图2-1 常规数据缓存方案

 

在一次业务促销过程中,运营给一大批用户集中推送了一条消息:10点钟准时抢购一批远低于市场价而且数量有限的促销活动商品。由于确实物美价廉,用户收到消息之后10点钟准时进入手机客户端的会场页进行疯抢。几分钟内很多用户进入会场页,最终导致页面异常,服务器疯狂报警。报警信息显示很多关于缓存的异常,由于缓存拿不到数据转而会转向数据库去查询数据,这样数据库更加难以支撑,整个业务集群处于雪崩状态(如图2-2所示)。

 

这里写图片描述

 

 

图2-2 短时间内请求量过大缓存被击穿

 

此时缓存到底发生了什么问题?关注哪些方面可以有效地预防缓存被击穿导致雪崩的发生呢?

缓存问题分析与解决过程

  1. 首先查看缓存详细日志,发现有很多带有“CacheOverflow”字样的日志,初步怀疑是触发了缓存限流。但是计算了缓存的整体能力和当前访问量情况:缓存的机器数×单机能够承受的QPS > 当前用户访问的最大QPS值,此时用户访问QPS并没有超过缓存之前的预算,怎么也会触发限流呢?
  2. 进一步分析日志,发现所有服务器上限流日志中缓存机器IP貌似都是同一台,说明大流量并没有按预想平均分散在不同的缓存机器上。回想前面提到的案例实际现象,发现确实有部分数据用户的访问请求都会触发对缓存中同一个key(热点key)进行访问,用户访问QPS有多大,则这个key的并发数就会有多大,而其他缓存机器完全没有分担任何请求压力,如图2-3所示。
  3. 然后紧急梳理出存在“热点请求”的key,并快速接入“热点本地缓存”方案,然后迅速在下一场秒杀活动中进一步进行验证,此时发现之前异常大幅度减少。不过还是有少量“CacheOverflow”字样异常日志。热点key的请求都被“本地缓存”拦截掉了,此时发现远程QPS限流异常已经基本没有了,这又是什么原因呢? 
    这里写图片描述
    图2-3 热点key触发单点限流
    仔细查看缓存单台机器的网络流量监控,发现偶尔有网络流量过大超过单台缓存机器的情况(如图2-4所示)。 
    这里写图片描述
    图2-4 网络流量监控


    说明缓存中有某些key对应的value数据过大,导致尽管QPS不是很高,但是网络流量(QPS×单个value的大小)还是过大,触发了缓存单台机器的网络流量限流。

  4. 紧急梳理出存在“大value”的key,发现这些“大value”部分是可以精简,部分是可以直接放入内存不用每次都远程获取的,经过一番梳理和优化之后,下次“秒杀”场景终于风平浪静了。至此问题初步得到解决。

预防“缓存被击穿”总结

  1. 评估缓存是否满足具体业务场景的请求流量,不是简单地对预估访问流量除以单台缓存的最大服务能力。
  2. 如果使用的缓存机制是按key的hash值散列到同一台机器,则必须梳理出当前业务场景中被高并发访问的那些key,看看这些key的并发访问量是否会超过单台机器的服务能力,如果超过则必须采取更多措施进行规避。
  3. 除了关注key的并发访问量外,还要关注key对应value的大小,如果key的并发访问量×value大小 > 单台缓存机器的网络流量限制,则也需要采取更多措施进行数据精简。

更多思考

  1. 单个key的请求量不超过单台缓存机器的服务能力,但是如果多个key正好散列到同一台机器,而且这几个key的流量之和超过单台机器的服务能力,我们该如何处理呢?
  2. 单个key的并发访问量×对应value大小 < 单台缓存机器的网络流量限制,但是如果多个key的并发访问量×各自对应value大小 >单台缓存机器的网络流量限制,又该如何处理呢?

针对上述两个问题,首先要做的是做好缓存中元素key的访问监控,一旦发现缓存有QPS限流或者网络大小限流时,能够迅速定位哪些key并发访问量过大,或者哪些key返回的value大小较大,再结合缓存的散列算法,通过一定规则动态修改key值来自动将这些可疑的key平均散列到各台缓存机器上去,这样就可以充分地利用所有缓存机器来分摊压力,保证缓存集群的最大可用能力,从而减少缓存被击穿的风险。

这篇关于高并发热点缓存数据可能出现问题及解决方案的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/458409

相关文章

线上Java OOM问题定位与解决方案超详细解析

《线上JavaOOM问题定位与解决方案超详细解析》OOM是JVM抛出的错误,表示内存分配失败,:本文主要介绍线上JavaOOM问题定位与解决方案的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录一、OOM问题核心认知1.1 OOM定义与技术定位1.2 OOM常见类型及技术特征二、OOM问题定位工具

Python一次性将指定版本所有包上传PyPI镜像解决方案

《Python一次性将指定版本所有包上传PyPI镜像解决方案》本文主要介绍了一个安全、完整、可离线部署的解决方案,用于一次性准备指定Python版本的所有包,然后导出到内网环境,感兴趣的小伙伴可以跟随... 目录为什么需要这个方案完整解决方案1. 项目目录结构2. 创建智能下载脚本3. 创建包清单生成脚本4

java.sql.SQLTransientConnectionException连接超时异常原因及解决方案

《java.sql.SQLTransientConnectionException连接超时异常原因及解决方案》:本文主要介绍java.sql.SQLTransientConnectionExcep... 目录一、引言二、异常信息分析三、可能的原因3.1 连接池配置不合理3.2 数据库负载过高3.3 连接泄漏

Vue3绑定props默认值问题

《Vue3绑定props默认值问题》使用Vue3的defineProps配合TypeScript的interface定义props类型,并通过withDefaults设置默认值,使组件能安全访问传入的... 目录前言步骤步骤1:使用 defineProps 定义 Props步骤2:设置默认值总结前言使用T

C#文件复制异常:"未能找到文件"的解决方案与预防措施

《C#文件复制异常:未能找到文件的解决方案与预防措施》在C#开发中,文件操作是基础中的基础,但有时最基础的File.Copy()方法也会抛出令人困惑的异常,当targetFilePath设置为D:2... 目录一个看似简单的文件操作问题问题重现与错误分析错误代码示例错误信息根本原因分析全面解决方案1. 确保

Web服务器-Nginx-高并发问题

《Web服务器-Nginx-高并发问题》Nginx通过事件驱动、I/O多路复用和异步非阻塞技术高效处理高并发,结合动静分离和限流策略,提升性能与稳定性... 目录前言一、架构1. 原生多进程架构2. 事件驱动模型3. IO多路复用4. 异步非阻塞 I/O5. Nginx高并发配置实战二、动静分离1. 职责2

解决升级JDK报错:module java.base does not“opens java.lang.reflect“to unnamed module问题

《解决升级JDK报错:modulejava.basedoesnot“opensjava.lang.reflect“tounnamedmodule问题》SpringBoot启动错误源于Jav... 目录问题描述原因分析解决方案总结问题描述启动sprintboot时报以下错误原因分析编程异js常是由Ja

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

MySQL 表空却 ibd 文件过大的问题及解决方法

《MySQL表空却ibd文件过大的问题及解决方法》本文给大家介绍MySQL表空却ibd文件过大的问题及解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考... 目录一、问题背景:表空却 “吃满” 磁盘的怪事二、问题复现:一步步编程还原异常场景1. 准备测试源表与数据

解决Nginx启动报错Job for nginx.service failed because the control process exited with error code问题

《解决Nginx启动报错Jobfornginx.servicefailedbecausethecontrolprocessexitedwitherrorcode问题》Nginx启... 目录一、报错如下二、解决原因三、解决方式总结一、报错如下Job for nginx.service failed bec