机器学习: Canonical Correlation Analysis 典型相关分析

2023-12-05 11:58

本文主要是介绍机器学习: Canonical Correlation Analysis 典型相关分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Canonical Correlation Analysis(CCA)典型相关分析也是一种常用的降维算法。我们知道,PCA(Principal Component Analysis) 主分量分析将数据从高维映射到低维空间同时,保证了数据的分散性尽可能地大, 也就是数据的方差或者协方差尽可能大。而LDA(Linear Discriminant Analysis) 线性判别分析则利用了类标签,利用一种监督学习的方法,将数据从高维空间映射到低维空间时,让不同类的数据尽可能地分开而同一类的数据尽可能地聚合。

但是,有的时候,我们想探讨多个线性空间之间的相关性。比如有的时候我们会从图像中提取各种特征,每一种特征都可以构成一个线性空间,为了分析这些空间之间的相关性,我们可以利用CCA 来做分析。

假设我们有两个特征空间, S1=x1Rd1 , S2=x2Rd2 , 我们可以将两个特征向量合并。

x=(x1x2)E(x)=(μ1μ2)Σ=(Σ11Σ21Σ12Σ22)

可以看到, Σ12=ΣT21 Σ 称为协方差矩阵。我们引入投影向量 a , b , 假设投影之后的变量满足:

u=aTx1v=bTx2

可以进一步算出 u,v 的方差和协方差:

var(u)=aTΣ11a,var(v)=bTΣ2b,cov(u,v)=aTΣ12b

可以计算出 u,v 的相关系数:

Corr(u,v)=cov(u,v)var(u)var(v)

u,v 的表达式代入,可以得到:

Corr(u,v)=aTΣ12baTΣ11abTΣ22b

我们的目标是让相关系数 Corr(u,v) 尽可能地大。为了求解 a,b , 可以固定分母而让分子最大化,所以上面的函数可以变成:

maxa,baTΣ12b

s.t.aTΣ11a=1,bTΣ22b=1

构造拉格朗日等式:

L=aTΣ12bλ12(aTΣ11a1)λ22(bTΣ22b1)

L 分别对a,b 求导,可以得到:

La=Σ12bλ1Σ11a=0

Lb=Σ21aλ2Σ22b=0

根据约束条件,可以得到:

λ1=λ2=aTΣ12b

所以只要求出 λ1 或者 λ2 就可以得到最大的相关系数。令 λ=λ1=λ2 .

通过上面的偏导数,我们可以得到:

Σ111Σ12b=λa

Σ122Σ21a=λb

写成矩阵形式:

(Σ11100Σ122)(0Σ21Σ120)(ab)=λ(ab)

令:

B=(Σ1100Σ22),A=(0Σ21Σ120)w=(ab)
,
那么,上式可以表示成:

B1Aw=λw

所以, λ w 就是 B1A 的特征值和特征向量。我们可以求出 B1A 的特征值和特征向量,然后利用特征向量将原来的特征
x1,x2 做映射。对应特征值 λ 的求解,可以有更简单的方法,从上面的偏导数,我们可以得到如下等式:

Σ111Σ12Σ122Σ21a=λ2a

我们可以利用上面的表达式求出 λ a ,然后再待会上面的偏导数等式求出 b .

λ 就是 u,v 的相关系数, u,v 就是一对典型变量(canonical variables)。按照 B1A 的特征值从大到小排列,可以求出一系列的典型变量。特征值越大,说明典型变量的相关性越强。

参考来源:
http://www.cnblogs.com/jerrylead/archive/2011/06/20/2085491.html
https://en.wikipedia.org/wiki/Canonical_correlation

这篇关于机器学习: Canonical Correlation Analysis 典型相关分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/457481

相关文章

Java学习手册之Filter和Listener使用方法

《Java学习手册之Filter和Listener使用方法》:本文主要介绍Java学习手册之Filter和Listener使用方法的相关资料,Filter是一种拦截器,可以在请求到达Servl... 目录一、Filter(过滤器)1. Filter 的工作原理2. Filter 的配置与使用二、Listen

Python的time模块一些常用功能(各种与时间相关的函数)

《Python的time模块一些常用功能(各种与时间相关的函数)》Python的time模块提供了各种与时间相关的函数,包括获取当前时间、处理时间间隔、执行时间测量等,:本文主要介绍Python的... 目录1. 获取当前时间2. 时间格式化3. 延时执行4. 时间戳运算5. 计算代码执行时间6. 转换为指

Java程序进程起来了但是不打印日志的原因分析

《Java程序进程起来了但是不打印日志的原因分析》:本文主要介绍Java程序进程起来了但是不打印日志的原因分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Java程序进程起来了但是不打印日志的原因1、日志配置问题2、日志文件权限问题3、日志文件路径问题4、程序

Java字符串操作技巧之语法、示例与应用场景分析

《Java字符串操作技巧之语法、示例与应用场景分析》在Java算法题和日常开发中,字符串处理是必备的核心技能,本文全面梳理Java中字符串的常用操作语法,结合代码示例、应用场景和避坑指南,可快速掌握字... 目录引言1. 基础操作1.1 创建字符串1.2 获取长度1.3 访问字符2. 字符串处理2.1 子字

Python 迭代器和生成器概念及场景分析

《Python迭代器和生成器概念及场景分析》yield是Python中实现惰性计算和协程的核心工具,结合send()、throw()、close()等方法,能够构建高效、灵活的数据流和控制流模型,这... 目录迭代器的介绍自定义迭代器省略的迭代器生产器的介绍yield的普通用法yield的高级用法yidle

C++ Sort函数使用场景分析

《C++Sort函数使用场景分析》sort函数是algorithm库下的一个函数,sort函数是不稳定的,即大小相同的元素在排序后相对顺序可能发生改变,如果某些场景需要保持相同元素间的相对顺序,可使... 目录C++ Sort函数详解一、sort函数调用的两种方式二、sort函数使用场景三、sort函数排序

kotlin中const 和val的区别及使用场景分析

《kotlin中const和val的区别及使用场景分析》在Kotlin中,const和val都是用来声明常量的,但它们的使用场景和功能有所不同,下面给大家介绍kotlin中const和val的区别,... 目录kotlin中const 和val的区别1. val:2. const:二 代码示例1 Java

Go标准库常见错误分析和解决办法

《Go标准库常见错误分析和解决办法》Go语言的标准库为开发者提供了丰富且高效的工具,涵盖了从网络编程到文件操作等各个方面,然而,标准库虽好,使用不当却可能适得其反,正所谓工欲善其事,必先利其器,本文将... 目录1. 使用了错误的time.Duration2. time.After导致的内存泄漏3. jsO

Spring事务中@Transactional注解不生效的原因分析与解决

《Spring事务中@Transactional注解不生效的原因分析与解决》在Spring框架中,@Transactional注解是管理数据库事务的核心方式,本文将深入分析事务自调用的底层原理,解释为... 目录1. 引言2. 事务自调用问题重现2.1 示例代码2.2 问题现象3. 为什么事务自调用会失效3

找不到Anaconda prompt终端的原因分析及解决方案

《找不到Anacondaprompt终端的原因分析及解决方案》因为anaconda还没有初始化,在安装anaconda的过程中,有一行是否要添加anaconda到菜单目录中,由于没有勾选,导致没有菜... 目录问题原因问http://www.chinasem.cn题解决安装了 Anaconda 却找不到 An