机器学习: Canonical Correlation Analysis 典型相关分析

2023-12-05 11:58

本文主要是介绍机器学习: Canonical Correlation Analysis 典型相关分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Canonical Correlation Analysis(CCA)典型相关分析也是一种常用的降维算法。我们知道,PCA(Principal Component Analysis) 主分量分析将数据从高维映射到低维空间同时,保证了数据的分散性尽可能地大, 也就是数据的方差或者协方差尽可能大。而LDA(Linear Discriminant Analysis) 线性判别分析则利用了类标签,利用一种监督学习的方法,将数据从高维空间映射到低维空间时,让不同类的数据尽可能地分开而同一类的数据尽可能地聚合。

但是,有的时候,我们想探讨多个线性空间之间的相关性。比如有的时候我们会从图像中提取各种特征,每一种特征都可以构成一个线性空间,为了分析这些空间之间的相关性,我们可以利用CCA 来做分析。

假设我们有两个特征空间, S1=x1Rd1 , S2=x2Rd2 , 我们可以将两个特征向量合并。

x=(x1x2)E(x)=(μ1μ2)Σ=(Σ11Σ21Σ12Σ22)

可以看到, Σ12=ΣT21 Σ 称为协方差矩阵。我们引入投影向量 a , b , 假设投影之后的变量满足:

u=aTx1v=bTx2

可以进一步算出 u,v 的方差和协方差:

var(u)=aTΣ11a,var(v)=bTΣ2b,cov(u,v)=aTΣ12b

可以计算出 u,v 的相关系数:

Corr(u,v)=cov(u,v)var(u)var(v)

u,v 的表达式代入,可以得到:

Corr(u,v)=aTΣ12baTΣ11abTΣ22b

我们的目标是让相关系数 Corr(u,v) 尽可能地大。为了求解 a,b , 可以固定分母而让分子最大化,所以上面的函数可以变成:

maxa,baTΣ12b

s.t.aTΣ11a=1,bTΣ22b=1

构造拉格朗日等式:

L=aTΣ12bλ12(aTΣ11a1)λ22(bTΣ22b1)

L 分别对a,b 求导,可以得到:

La=Σ12bλ1Σ11a=0

Lb=Σ21aλ2Σ22b=0

根据约束条件,可以得到:

λ1=λ2=aTΣ12b

所以只要求出 λ1 或者 λ2 就可以得到最大的相关系数。令 λ=λ1=λ2 .

通过上面的偏导数,我们可以得到:

Σ111Σ12b=λa

Σ122Σ21a=λb

写成矩阵形式:

(Σ11100Σ122)(0Σ21Σ120)(ab)=λ(ab)

令:

B=(Σ1100Σ22),A=(0Σ21Σ120)w=(ab)
,
那么,上式可以表示成:

B1Aw=λw

所以, λ w 就是 B1A 的特征值和特征向量。我们可以求出 B1A 的特征值和特征向量,然后利用特征向量将原来的特征
x1,x2 做映射。对应特征值 λ 的求解,可以有更简单的方法,从上面的偏导数,我们可以得到如下等式:

Σ111Σ12Σ122Σ21a=λ2a

我们可以利用上面的表达式求出 λ a ,然后再待会上面的偏导数等式求出 b .

λ 就是 u,v 的相关系数, u,v 就是一对典型变量(canonical variables)。按照 B1A 的特征值从大到小排列,可以求出一系列的典型变量。特征值越大,说明典型变量的相关性越强。

参考来源:
http://www.cnblogs.com/jerrylead/archive/2011/06/20/2085491.html
https://en.wikipedia.org/wiki/Canonical_correlation

这篇关于机器学习: Canonical Correlation Analysis 典型相关分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/457481

相关文章

Unity新手入门学习殿堂级知识详细讲解(图文)

《Unity新手入门学习殿堂级知识详细讲解(图文)》Unity是一款跨平台游戏引擎,支持2D/3D及VR/AR开发,核心功能模块包括图形、音频、物理等,通过可视化编辑器与脚本扩展实现开发,项目结构含A... 目录入门概述什么是 UnityUnity引擎基础认知编辑器核心操作Unity 编辑器项目模式分类工程

Python学习笔记之getattr和hasattr用法示例详解

《Python学习笔记之getattr和hasattr用法示例详解》在Python中,hasattr()、getattr()和setattr()是一组内置函数,用于对对象的属性进行操作和查询,这篇文章... 目录1.getattr用法详解1.1 基本作用1.2 示例1.3 原理2.hasattr用法详解2.

Android 缓存日志Logcat导出与分析最佳实践

《Android缓存日志Logcat导出与分析最佳实践》本文全面介绍AndroidLogcat缓存日志的导出与分析方法,涵盖按进程、缓冲区类型及日志级别过滤,自动化工具使用,常见问题解决方案和最佳实... 目录android 缓存日志(Logcat)导出与分析全攻略为什么要导出缓存日志?按需过滤导出1. 按

Linux中的HTTPS协议原理分析

《Linux中的HTTPS协议原理分析》文章解释了HTTPS的必要性:HTTP明文传输易被篡改和劫持,HTTPS通过非对称加密协商对称密钥、CA证书认证和混合加密机制,有效防范中间人攻击,保障通信安全... 目录一、什么是加密和解密?二、为什么需要加密?三、常见的加密方式3.1 对称加密3.2非对称加密四、

MySQL中读写分离方案对比分析与选型建议

《MySQL中读写分离方案对比分析与选型建议》MySQL读写分离是提升数据库可用性和性能的常见手段,本文将围绕现实生产环境中常见的几种读写分离模式进行系统对比,希望对大家有所帮助... 目录一、问题背景介绍二、多种解决方案对比2.1 原生mysql主从复制2.2 Proxy层中间件:ProxySQL2.3

python使用Akshare与Streamlit实现股票估值分析教程(图文代码)

《python使用Akshare与Streamlit实现股票估值分析教程(图文代码)》入职测试中的一道题,要求:从Akshare下载某一个股票近十年的财务报表包括,资产负债表,利润表,现金流量表,保存... 目录一、前言二、核心知识点梳理1、Akshare数据获取2、Pandas数据处理3、Matplotl

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

MySQL 内存使用率常用分析语句

《MySQL内存使用率常用分析语句》用户整理了MySQL内存占用过高的分析方法,涵盖操作系统层确认及数据库层bufferpool、内存模块差值、线程状态、performance_schema性能数据... 目录一、 OS层二、 DB层1. 全局情况2. 内存占js用详情最近连续遇到mysql内存占用过高导致

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499