《动手学深度学习》task1_1 线性回归

2023-12-05 10:18

本文主要是介绍《动手学深度学习》task1_1 线性回归,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 线性回归
    • 线性回归的基本要素
      • 模型
      • 数据集
      • 损失函数
      • 优化函数 - 随机梯度下降
    • 矢量计算
    • 线性回归模型从零开始的实现
      • 生成数据集
      • 使用图像来展示生成的数据
      • 读取数据集
      • 初始化模型参数
      • 定义模型
      • 定义损失函数
      • 定义优化函数
      • 训练
    • 线性回归模型使用pytorch的简洁实现
      • 生成数据集
      • 读取数据集
      • 定义模型
      • 初始化模型参数
      • 定义损失函数
      • 定义优化函数
      • 训练
    • 两种实现方式的比较

线性回归

主要内容包括:

  1. 线性回归的基本要素
  2. 线性回归模型从零开始的实现
  3. 线性回归模型使用pytorch的简洁实现

线性回归的基本要素

模型

为了简单起见,这里我们假设价格只取决于房屋状况的两个因素,即面积(平方米)和房龄(年)。接下来我们希望探索价格与这两个因素的具体关系。线性回归假设输出与各个输入之间是线性关系:
p r i c e = w a r e a ⋅ a r e a + w a g e ⋅ a g e + b \mathrm{price} = w_{\mathrm{area}} \cdot \mathrm{area} + w_{\mathrm{age}} \cdot \mathrm{age} + b price=wareaarea+wageage+b

数据集

我们通常收集一系列的真实数据,例如多栋房屋的真实售出价格和它们对应的面积和房龄。我们希望在这个数据上面寻找模型参数来使模型的预测价格与真实价格的误差最小。在机器学习术语里,该数据集被称为训练数据集(training data set)或训练集(training set),一栋房屋被称为一个样本(sample),其真实售出价格叫作标签(label),用来预测标签的两个因素叫作特征(feature)。特征用来表征样本的特点。

损失函数

在模型训练中,我们需要衡量价格预测值与真实值之间的误差。通常我们会选取一个非负数作为误差,且数值越小表示误差越小。一个常用的选择是平方函数。 它在评估索引为 i i i 的样本误差的表达式为
l ( i ) ( w , b ) = 1 2 ( y ^ ( i ) − y ( i ) ) 2 , l^{(i)}(\mathbf{w}, b) = \frac{1}{2} \left(\hat{y}^{(i)} - y^{(i)}\right)^2, l(i)(w,b)=21(y^(i)y(i))2,

L ( w , b ) = 1 n ∑ i = 1 n l ( i ) ( w , b ) = 1 n ∑ i = 1 n 1 2 ( w ⊤ x ( i ) + b − y ( i ) ) 2 . L(\mathbf{w}, b) =\frac{1}{n}\sum_{i=1}^n l^{(i)}(\mathbf{w}, b) =\frac{1}{n} \sum_{i=1}^n \frac{1}{2}\left(\mathbf{w}^\top \mathbf{x}^{(i)} + b - y^{(i)}\right)^2. L(w,b)=n1i=1nl(i)(w,b)=n1i=1n21(wx(i)+by(i))2.

优化函数 - 随机梯度下降

当模型和损失函数形式较为简单时,上面的误差最小化问题的解可以直接用公式表达出来。这类解叫作解析解(analytical solution)。本节使用的线性回归和平方误差刚好属于这个范畴。然而,大多数深度学习模型并没有解析解,只能通过优化算法有限次迭代模型参数来尽可能降低损失函数的值。这类解叫作数值解(numerical solution)。

在求数值解的优化算法中,小批量随机梯度下降(mini-batch stochastic gradient descent)在深度学习中被广泛使用。它的算法很简单:先选取一组模型参数的初始值,如随机选取;接下来对参数进行多次迭代,使每次迭代都可能降低损失函数的值。在每次迭代中,先随机均匀采样一个由固定数目训练数据样本所组成的小批量(mini-batch) B \mathcal{B} B,然后求小批量中数据样本的平均损失有关模型参数的导数(梯度),最后用此结果与预先设定的一个正数的乘积作为模型参数在本次迭代的减小量。
( w , b ) ← ( w , b ) − η ∣ B ∣ ∑ i ∈ B ∂ ( w , b ) l ( i ) ( w , b ) (\mathbf{w},b) \leftarrow (\mathbf{w},b) - \frac{\eta}{|\mathcal{B}|} \sum_{i \in \mathcal{B}} \partial_{(\mathbf{w},b)} l^{(i)}(\mathbf{w},b) (w,b)(w,b)BηiB(w,b)l(i)(w,b)
学习率: η \eta η代表在每次优化中,能够学习的步长的大小
批量大小: B \mathcal{B} B是小批量计算中的批量大小batch size

总结一下,优化函数的有以下两个步骤:

  • (i)初始化模型参数,一般来说使用随机初始化;
  • (ii)我们在数据上迭代多次,通过在负梯度方向移动参数来更新每个参数。

矢量计算

在模型训练或预测时,我们常常会同时处理多个数据样本并用到矢量计算。在介绍线性回归的矢量计算表达式之前,让我们先考虑对两个向量相加的两种方法。

  1. 向量相加的一种方法是,将这两个向量按元素逐一做标量加法。
  2. 向量相加的另一种方法是,将这两个向量直接做矢量加法。
import torch
import time# init variable a, b as 1000 dimension vector
n = 1000
a = torch.ones(n)
b = torch.ones(n)
# define a timer class to record time
class Timer(object):"""Record multiple running times."""def __init__(self):self.times = []self.start()def start(self):# start the timerself.start_time = time.time()def stop(self):# stop the timer and record time into a listself.times.append(time.time() - self.start_time)return self.times[-1]def avg(self):# calculate the average and returnreturn sum(self.times)/len(self.times)def sum(self):# return the sum of recorded timereturn sum(self.times)

现在我们可以来测试了。首先将两个向量使用for循环按元素逐一做标量加法。

timer = Timer()
c = torch.zeros(n)
for i in range(n):c[i] = a[i] + b[i]
'%.5f sec' % timer.stop()

另外是使用torch来将两个向量直接做矢量加法:

timer.start()
d = a + b
'%.5f sec' % timer.stop()

结果很明显,后者比前者运算速度更快。因此,我们应该尽可能采用矢量计算,以提升计算效率。

线性回归模型从零开始的实现

# import packages and modules
%matplotlib inline
import torch
from IPython import display
from matplotlib import pyplot as plt
import numpy as np
import randomprint(torch.__version__)

生成数据集

使用线性模型来生成数据集,生成一个1000个样本的数据集,下面是用来生成数据的线性关系:
p r i c e = w a r e a ⋅ a r e a + w a g e ⋅ a g e + b \mathrm{price} = w_{\mathrm{area}} \cdot \mathrm{area} + w_{\mathrm{age}} \cdot \mathrm{age} + b price=wareaarea+wageage+b

# set input feature number 
num_inputs = 2
# set example number
num_examples = 1000# set true weight and bias in order to generate corresponded label
true_w = [2, -3.4]
true_b = 4.2features = torch.randn(num_examples, num_inputs,dtype=torch.float32)
labels = true_w[0] * features[:, 0] + true_w[1] * features[:, 1] + true_b
labels += torch.tensor(np.random.normal(0, 0.01, size=labels.size()),dtype=torch.float32)

使用图像来展示生成的数据

plt.scatter(features[:, 1].numpy(), labels.numpy(), 1);

读取数据集

def data_iter(batch_size, features, labels):num_examples = len(features)indices = list(range(num_examples))random.shuffle(indices)  # random read 10 samplesfor i in range(0, num_examples, batch_size):j = torch.LongTensor(indices[i: min(i + batch_size, num_examples)]) # the last time may be not enough for a whole batchyield  features.index_select(0, j), labels.index_select(0, j)
batch_size = 10for X, y in data_iter(batch_size, features, labels):print(X, '\n', y)break

初始化模型参数

w = torch.tensor(np.random.normal(0, 0.01, (num_inputs, 1)), dtype=torch.float32)
b = torch.zeros(1, dtype=torch.float32)w.requires_grad_(requires_grad=True)
b.requires_grad_(requires_grad=True)

定义模型

定义用来训练参数的训练模型:
p r i c e = w a r e a ⋅ a r e a + w a g e ⋅ a g e + b \mathrm{price} = w_{\mathrm{area}} \cdot \mathrm{area} + w_{\mathrm{age}} \cdot \mathrm{age} + b price=wareaarea+wageage+b

def linreg(X, w, b):return torch.mm(X, w) + b

定义损失函数

我们使用的是均方误差损失函数:
l ( i ) ( w , b ) = 1 2 ( y ^ ( i ) − y ( i ) ) 2 , l^{(i)}(\mathbf{w}, b) = \frac{1}{2} \left(\hat{y}^{(i)} - y^{(i)}\right)^2, l(i)(w,b)=21(y^(i)y(i))2,

def squared_loss(y_hat, y): return (y_hat - y.view(y_hat.size())) ** 2 / 2

定义优化函数

在这里优化函数使用的是小批量随机梯度下降:
( w , b ) ← ( w , b ) − η ∣ B ∣ ∑ i ∈ B ∂ ( w , b ) l ( i ) ( w , b ) (\mathbf{w},b) \leftarrow (\mathbf{w},b) - \frac{\eta}{|\mathcal{B}|} \sum_{i \in \mathcal{B}} \partial_{(\mathbf{w},b)} l^{(i)}(\mathbf{w},b) (w,b)(w,b)BηiB(w,b)l(i)(w,b)

def sgd(params, lr, batch_size): for param in params:param.data -= lr * param.grad / batch_size # ues .data to operate param without gradient track

训练

当数据集、模型、损失函数和优化函数定义完了之后就可来准备进行模型的训练了。

# super parameters init
lr = 0.03
num_epochs = 5net = linreg
loss = squared_loss# training
for epoch in range(num_epochs):  # training repeats num_epochs times# in each epoch, all the samples in dataset will be used once# X is the feature and y is the label of a batch samplefor X, y in data_iter(batch_size, features, labels):l = loss(net(X, w, b), y).sum()  # calculate the gradient of batch sample loss l.backward()  # using small batch random gradient descent to iter model parameterssgd([w, b], lr, batch_size)  # reset parameter gradientw.grad.data.zero_()b.grad.data.zero_()train_l = loss(net(features, w, b), labels)print('epoch %d, loss %f' % (epoch + 1, train_l.mean().item()))
w, true_w, b, true_b

线性回归模型使用pytorch的简洁实现

import torch
from torch import nn
import numpy as np
torch.manual_seed(1)print(torch.__version__)
torch.set_default_tensor_type('torch.FloatTensor')

生成数据集

在这里生成数据集跟从零开始的实现中是完全一样的。

num_inputs = 2
num_examples = 1000true_w = [2, -3.4]
true_b = 4.2features = torch.tensor(np.random.normal(0, 1, (num_examples, num_inputs)), dtype=torch.float)
labels = true_w[0] * features[:, 0] + true_w[1] * features[:, 1] + true_b
labels += torch.tensor(np.random.normal(0, 0.01, size=labels.size()), dtype=torch.float)

读取数据集

import torch.utils.data as Databatch_size = 10# combine featues and labels of dataset
dataset = Data.TensorDataset(features, labels)# put dataset into DataLoader
data_iter = Data.DataLoader(dataset=dataset,            # torch TensorDataset formatbatch_size=batch_size,      # mini batch sizeshuffle=True,               # whether shuffle the data or notnum_workers=2,              # read data in multithreading
)
for X, y in data_iter:print(X, '\n', y)break

定义模型

class LinearNet(nn.Module):def __init__(self, n_feature):super(LinearNet, self).__init__()      # call father function to init self.linear = nn.Linear(n_feature, 1)  # function prototype: `torch.nn.Linear(in_features, out_features, bias=True)`def forward(self, x):y = self.linear(x)return ynet = LinearNet(num_inputs)
print(net)
# ways to init a multilayer network
# method one
net = nn.Sequential(nn.Linear(num_inputs, 1)# other layers can be added here)# method two
net = nn.Sequential()
net.add_module('linear', nn.Linear(num_inputs, 1))
# net.add_module ......# method three
from collections import OrderedDict
net = nn.Sequential(OrderedDict([('linear', nn.Linear(num_inputs, 1))# ......]))print(net)
print(net[0])

初始化模型参数

from torch.nn import initinit.normal_(net[0].weight, mean=0.0, std=0.01)
init.constant_(net[0].bias, val=0.0)  # or you can use `net[0].bias.data.fill_(0)` to modify it directly
for param in net.parameters():print(param)

定义损失函数

loss = nn.MSELoss()    # nn built-in squared loss function# function prototype: `torch.nn.MSELoss(size_average=None, reduce=None, reduction='mean')`

定义优化函数

import torch.optim as optimoptimizer = optim.SGD(net.parameters(), lr=0.03)   # built-in random gradient descent function
print(optimizer)  # function prototype: `torch.optim.SGD(params, lr=, momentum=0, dampening=0, weight_decay=0, nesterov=False)`

训练

num_epochs = 3
for epoch in range(1, num_epochs + 1):for X, y in data_iter:output = net(X)l = loss(output, y.view(-1, 1))optimizer.zero_grad() # reset gradient, equal to net.zero_grad()l.backward()optimizer.step()print('epoch %d, loss: %f' % (epoch, l.item()))
# result comparision
dense = net[0]
print(true_w, dense.weight.data)
print(true_b, dense.bias.data)

两种实现方式的比较

  1. 从零开始的实现(推荐用来学习)

    能够更好的理解模型和神经网络底层的原理

  2. 使用pytorch的简洁实现

    能够更加快速地完成模型的设计与实现

这篇关于《动手学深度学习》task1_1 线性回归的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/457153

相关文章

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

深度解析Java项目中包和包之间的联系

《深度解析Java项目中包和包之间的联系》文章浏览阅读850次,点赞13次,收藏8次。本文详细介绍了Java分层架构中的几个关键包:DTO、Controller、Service和Mapper。_jav... 目录前言一、各大包1.DTO1.1、DTO的核心用途1.2. DTO与实体类(Entity)的区别1

深度解析Python装饰器常见用法与进阶技巧

《深度解析Python装饰器常见用法与进阶技巧》Python装饰器(Decorator)是提升代码可读性与复用性的强大工具,本文将深入解析Python装饰器的原理,常见用法,进阶技巧与最佳实践,希望可... 目录装饰器的基本原理函数装饰器的常见用法带参数的装饰器类装饰器与方法装饰器装饰器的嵌套与组合进阶技巧

深度解析Spring Boot拦截器Interceptor与过滤器Filter的区别与实战指南

《深度解析SpringBoot拦截器Interceptor与过滤器Filter的区别与实战指南》本文深度解析SpringBoot中拦截器与过滤器的区别,涵盖执行顺序、依赖关系、异常处理等核心差异,并... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现

深度解析Spring AOP @Aspect 原理、实战与最佳实践教程

《深度解析SpringAOP@Aspect原理、实战与最佳实践教程》文章系统讲解了SpringAOP核心概念、实现方式及原理,涵盖横切关注点分离、代理机制(JDK/CGLIB)、切入点类型、性能... 目录1. @ASPect 核心概念1.1 AOP 编程范式1.2 @Aspect 关键特性2. 完整代码实

SpringBoot开发中十大常见陷阱深度解析与避坑指南

《SpringBoot开发中十大常见陷阱深度解析与避坑指南》在SpringBoot的开发过程中,即使是经验丰富的开发者也难免会遇到各种棘手的问题,本文将针对SpringBoot开发中十大常见的“坑... 目录引言一、配置总出错?是不是同时用了.properties和.yml?二、换个位置配置就失效?搞清楚加

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

Python中文件读取操作漏洞深度解析与防护指南

《Python中文件读取操作漏洞深度解析与防护指南》在Web应用开发中,文件操作是最基础也最危险的功能之一,这篇文章将全面剖析Python环境中常见的文件读取漏洞类型,成因及防护方案,感兴趣的小伙伴可... 目录引言一、静态资源处理中的路径穿越漏洞1.1 典型漏洞场景1.2 os.path.join()的陷

Android学习总结之Java和kotlin区别超详细分析

《Android学习总结之Java和kotlin区别超详细分析》Java和Kotlin都是用于Android开发的编程语言,它们各自具有独特的特点和优势,:本文主要介绍Android学习总结之Ja... 目录一、空安全机制真题 1:Kotlin 如何解决 Java 的 NullPointerExceptio

Spring Boot拦截器Interceptor与过滤器Filter深度解析(区别、实现与实战指南)

《SpringBoot拦截器Interceptor与过滤器Filter深度解析(区别、实现与实战指南)》:本文主要介绍SpringBoot拦截器Interceptor与过滤器Filter深度解析... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现与实