C#,数值计算——计算实对称矩阵所有特征值和特征向量的雅可比(Jacobi)方法与源程序

本文主要是介绍C#,数值计算——计算实对称矩阵所有特征值和特征向量的雅可比(Jacobi)方法与源程序,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1 文本格式

using System;

namespace Legalsoft.Truffer
{
    /// <summary>
    /// Computes all eigenvalues and eigenvectors of
    /// a real symmetric matrix by Jacobi's method.
    /// </summary>
    public class Jacobi
    {
        private int n { get; set; }
        private double[,] a;
        private double[,] v;
        private double[] d;
        private int nrot { get; set; }
        private double EPS { get; set; }


        /// <summary>
        /// Computes all eigenvalues and eigenvectors of a real symmetric matrix
        /// a[0..n - 1][0..n - 1]. On output, d[0..n - 1] contains the eigenvalues of a
        /// sorted into descending order, while v[0..n - 1][0..n - 1] is a matrix whose
        /// columns contain the corresponding normalized eigenvectors.nrot contains
        /// the number of Jacobi rotations that were required.Only the upper triangle
        /// of a is accessed.
        /// </summary>
        /// <param name="aa"></param>
        /// <exception cref="Exception"></exception>
        public Jacobi(double[,] aa)
        {
            this.n = aa.GetLength(0);
            this.a = aa;
            this.v = new double[n, n];
            this.d = new double[n];
            this.nrot = 0;
            this.EPS = float.Epsilon;

            double[] b = new double[n];
            double[] z = new double[n];

            for (int ip = 0; ip < n; ip++)
            {
                for (int iq = 0; iq < n; iq++)
                {
                    v[ip, iq] = 0.0;
                }
                v[ip, ip] = 1.0;
            }
            for (int ip = 0; ip < n; ip++)
            {
                b[ip] = d[ip] = a[ip, ip];
                z[ip] = 0.0;
            }
            for (int i = 1; i <= 50; i++)
            {
                double sm = 0.0;
                for (int ip = 0; ip < n - 1; ip++)
                {
                    for (int iq = ip + 1; iq < n; iq++)
                    {
                        sm += Math.Abs(a[ip, iq]);
                    }
                }
                //if (sm == 0.0)
                if (Math.Abs(sm) <= float.Epsilon)
                {
                    eigsrt( d,  v);
                    return;
                }
                double tresh;
                if (i < 4)
                {
                    tresh = 0.2 * sm / (n * n);
                }
                else
                {
                    tresh = 0.0;
                }
                for (int ip = 0; ip < n - 1; ip++)
                {
                    for (int iq = ip + 1; iq < n; iq++)
                    {
                        double g = 100.0 * Math.Abs(a[ip, iq]);
                        if (i > 4 && g <= EPS * Math.Abs(d[ip]) && g <= EPS * Math.Abs(d[iq]))
                        {
                            a[ip, iq] = 0.0;
                        }
                        else if (Math.Abs(a[ip, iq]) > tresh)
                        {
                            double h = d[iq] - d[ip];
                            double t;
                            if (g <= EPS * Math.Abs(h))
                            {
                                t = (a[ip, iq]) / h;
                            }
                            else
                            {
                                double theta = 0.5 * h / (a[ip, iq]);
                                t = 1.0 / (Math.Abs(theta) + Math.Sqrt(1.0 + theta * theta));
                                if (theta < 0.0)
                                {
                                    t = -t;
                                }
                            }
                            double c = 1.0 / Math.Sqrt(1 + t * t);
                            double s = t * c;
                            double tau = s / (1.0 + c);
                            h = t * a[ip, iq];
                            z[ip] -= h;
                            z[iq] += h;
                            d[ip] -= h;
                            d[iq] += h;
                            a[ip, iq] = 0.0;
                            for (int j = 0; j < ip; j++)
                            {
                                rot( a, s, tau, j, ip, j, iq);
                            }
                            for (int j = ip + 1; j < iq; j++)
                            {
                                rot( a, s, tau, ip, j, j, iq);
                            }
                            for (int j = iq + 1; j < n; j++)
                            {
                                rot( a, s, tau, ip, j, iq, j);
                            }
                            for (int j = 0; j < n; j++)
                            {
                                rot( v, s, tau, j, ip, j, iq);
                            }
                            ++nrot;
                        }
                    }
                }
                for (int ip = 0; ip < n; ip++)
                {
                    b[ip] += z[ip];
                    d[ip] = b[ip];
                    z[ip] = 0.0;
                }
            }
            throw new Exception("Too many iterations in routine jacobi");
        }

        public void rot(double[,] a, double s, double tau, int i, int j, int k, int l)
        {
            double g = a[i, j];
            double h = a[k, l];
            a[i, j] = g - s * (h + g * tau);
            a[k, l] = h + s * (g - h * tau);
        }

        /// <summary>
        /// Given the eigenvalues d[0..n - 1] and(optionally) the eigenvectors
        /// v[0..n - 1][0..n - 1] as determined by Jacobi or tqli, this routine sorts the
        /// eigenvalues into descending order and rearranges the columns of v
        /// correspondingly.The method is straight insertion.
        /// </summary>
        /// <param name="d"></param>
        /// <param name="v"></param>
        public static void eigsrt(double[] d, double[,] v)
        {
            int k;
            int n = d.Length;
            for (int i = 0; i < n - 1; i++)
            {
                double p = d[k = i];
                for (int j = i; j < n; j++)
                {
                    if (d[j] >= p)
                    {
                        p = d[k = j];
                    }
                }
                if (k != i)
                {
                    d[k] = d[i];
                    d[i] = p;
                    if (v != null)
                    {
                        for (int j = 0; j < n; j++)
                        {
                            p = v[j, i];
                            v[j, i] = v[j, k];
                            v[j, k] = p;
                        }
                    }
                }
            }
        }
    }
}
 

2 代码格式

using System;namespace Legalsoft.Truffer
{/// <summary>/// Computes all eigenvalues and eigenvectors of/// a real symmetric matrix by Jacobi's method./// </summary>public class Jacobi{private int n { get; set; }private double[,] a;private double[,] v;private double[] d;private int nrot { get; set; }private double EPS { get; set; }/// <summary>/// Computes all eigenvalues and eigenvectors of a real symmetric matrix/// a[0..n - 1][0..n - 1]. On output, d[0..n - 1] contains the eigenvalues of a/// sorted into descending order, while v[0..n - 1][0..n - 1] is a matrix whose/// columns contain the corresponding normalized eigenvectors.nrot contains/// the number of Jacobi rotations that were required.Only the upper triangle/// of a is accessed./// </summary>/// <param name="aa"></param>/// <exception cref="Exception"></exception>public Jacobi(double[,] aa){this.n = aa.GetLength(0);this.a = aa;this.v = new double[n, n];this.d = new double[n];this.nrot = 0;this.EPS = float.Epsilon;double[] b = new double[n];double[] z = new double[n];for (int ip = 0; ip < n; ip++){for (int iq = 0; iq < n; iq++){v[ip, iq] = 0.0;}v[ip, ip] = 1.0;}for (int ip = 0; ip < n; ip++){b[ip] = d[ip] = a[ip, ip];z[ip] = 0.0;}for (int i = 1; i <= 50; i++){double sm = 0.0;for (int ip = 0; ip < n - 1; ip++){for (int iq = ip + 1; iq < n; iq++){sm += Math.Abs(a[ip, iq]);}}//if (sm == 0.0)if (Math.Abs(sm) <= float.Epsilon){eigsrt( d,  v);return;}double tresh;if (i < 4){tresh = 0.2 * sm / (n * n);}else{tresh = 0.0;}for (int ip = 0; ip < n - 1; ip++){for (int iq = ip + 1; iq < n; iq++){double g = 100.0 * Math.Abs(a[ip, iq]);if (i > 4 && g <= EPS * Math.Abs(d[ip]) && g <= EPS * Math.Abs(d[iq])){a[ip, iq] = 0.0;}else if (Math.Abs(a[ip, iq]) > tresh){double h = d[iq] - d[ip];double t;if (g <= EPS * Math.Abs(h)){t = (a[ip, iq]) / h;}else{double theta = 0.5 * h / (a[ip, iq]);t = 1.0 / (Math.Abs(theta) + Math.Sqrt(1.0 + theta * theta));if (theta < 0.0){t = -t;}}double c = 1.0 / Math.Sqrt(1 + t * t);double s = t * c;double tau = s / (1.0 + c);h = t * a[ip, iq];z[ip] -= h;z[iq] += h;d[ip] -= h;d[iq] += h;a[ip, iq] = 0.0;for (int j = 0; j < ip; j++){rot( a, s, tau, j, ip, j, iq);}for (int j = ip + 1; j < iq; j++){rot( a, s, tau, ip, j, j, iq);}for (int j = iq + 1; j < n; j++){rot( a, s, tau, ip, j, iq, j);}for (int j = 0; j < n; j++){rot( v, s, tau, j, ip, j, iq);}++nrot;}}}for (int ip = 0; ip < n; ip++){b[ip] += z[ip];d[ip] = b[ip];z[ip] = 0.0;}}throw new Exception("Too many iterations in routine jacobi");}public void rot(double[,] a, double s, double tau, int i, int j, int k, int l){double g = a[i, j];double h = a[k, l];a[i, j] = g - s * (h + g * tau);a[k, l] = h + s * (g - h * tau);}/// <summary>/// Given the eigenvalues d[0..n - 1] and(optionally) the eigenvectors/// v[0..n - 1][0..n - 1] as determined by Jacobi or tqli, this routine sorts the/// eigenvalues into descending order and rearranges the columns of v/// correspondingly.The method is straight insertion./// </summary>/// <param name="d"></param>/// <param name="v"></param>public static void eigsrt(double[] d, double[,] v){int k;int n = d.Length;for (int i = 0; i < n - 1; i++){double p = d[k = i];for (int j = i; j < n; j++){if (d[j] >= p){p = d[k = j];}}if (k != i){d[k] = d[i];d[i] = p;if (v != null){for (int j = 0; j < n; j++){p = v[j, i];v[j, i] = v[j, k];v[j, k] = p;}}}}}}
}

这篇关于C#,数值计算——计算实对称矩阵所有特征值和特征向量的雅可比(Jacobi)方法与源程序的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/457011

相关文章

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.

Python pip下载包及所有依赖到指定文件夹的步骤说明

《Pythonpip下载包及所有依赖到指定文件夹的步骤说明》为了方便开发和部署,我们常常需要将Python项目所依赖的第三方包导出到本地文件夹中,:本文主要介绍Pythonpip下载包及所有依... 目录步骤说明命令格式示例参数说明离线安装方法注意事项总结要使用pip下载包及其所有依赖到指定文件夹,请按照以

Maven 配置中的 <mirror>绕过 HTTP 阻断机制的方法

《Maven配置中的<mirror>绕过HTTP阻断机制的方法》:本文主要介绍Maven配置中的<mirror>绕过HTTP阻断机制的方法,本文给大家分享问题原因及解决方案,感兴趣的朋友一... 目录一、问题场景:升级 Maven 后构建失败二、解决方案:通过 <mirror> 配置覆盖默认行为1. 配置示

SpringBoot排查和解决JSON解析错误(400 Bad Request)的方法

《SpringBoot排查和解决JSON解析错误(400BadRequest)的方法》在开发SpringBootRESTfulAPI时,客户端与服务端的数据交互通常使用JSON格式,然而,JSON... 目录问题背景1. 问题描述2. 错误分析解决方案1. 手动重新输入jsON2. 使用工具清理JSON3.

使用jenv工具管理多个JDK版本的方法步骤

《使用jenv工具管理多个JDK版本的方法步骤》jenv是一个开源的Java环境管理工具,旨在帮助开发者在同一台机器上轻松管理和切换多个Java版本,:本文主要介绍使用jenv工具管理多个JD... 目录一、jenv到底是干啥的?二、jenv的核心功能(一)管理多个Java版本(二)支持插件扩展(三)环境隔

Java中Map.Entry()含义及方法使用代码

《Java中Map.Entry()含义及方法使用代码》:本文主要介绍Java中Map.Entry()含义及方法使用的相关资料,Map.Entry是Java中Map的静态内部接口,用于表示键值对,其... 目录前言 Map.Entry作用核心方法常见使用场景1. 遍历 Map 的所有键值对2. 直接修改 Ma

Mybatis Plus Join使用方法示例详解

《MybatisPlusJoin使用方法示例详解》:本文主要介绍MybatisPlusJoin使用方法示例详解,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,... 目录1、pom文件2、yaml配置文件3、分页插件4、示例代码:5、测试代码6、和PageHelper结合6

Java中实现线程的创建和启动的方法

《Java中实现线程的创建和启动的方法》在Java中,实现线程的创建和启动是两个不同但紧密相关的概念,理解为什么要启动线程(调用start()方法)而非直接调用run()方法,是掌握多线程编程的关键,... 目录1. 线程的生命周期2. start() vs run() 的本质区别3. 为什么必须通过 st

C#如何去掉文件夹或文件名非法字符

《C#如何去掉文件夹或文件名非法字符》:本文主要介绍C#如何去掉文件夹或文件名非法字符的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C#去掉文件夹或文件名非法字符net类库提供了非法字符的数组这里还有个小窍门总结C#去掉文件夹或文件名非法字符实现有输入字