C#,数值计算——计算实对称矩阵所有特征值和特征向量的雅可比(Jacobi)方法与源程序

本文主要是介绍C#,数值计算——计算实对称矩阵所有特征值和特征向量的雅可比(Jacobi)方法与源程序,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1 文本格式

using System;

namespace Legalsoft.Truffer
{
    /// <summary>
    /// Computes all eigenvalues and eigenvectors of
    /// a real symmetric matrix by Jacobi's method.
    /// </summary>
    public class Jacobi
    {
        private int n { get; set; }
        private double[,] a;
        private double[,] v;
        private double[] d;
        private int nrot { get; set; }
        private double EPS { get; set; }


        /// <summary>
        /// Computes all eigenvalues and eigenvectors of a real symmetric matrix
        /// a[0..n - 1][0..n - 1]. On output, d[0..n - 1] contains the eigenvalues of a
        /// sorted into descending order, while v[0..n - 1][0..n - 1] is a matrix whose
        /// columns contain the corresponding normalized eigenvectors.nrot contains
        /// the number of Jacobi rotations that were required.Only the upper triangle
        /// of a is accessed.
        /// </summary>
        /// <param name="aa"></param>
        /// <exception cref="Exception"></exception>
        public Jacobi(double[,] aa)
        {
            this.n = aa.GetLength(0);
            this.a = aa;
            this.v = new double[n, n];
            this.d = new double[n];
            this.nrot = 0;
            this.EPS = float.Epsilon;

            double[] b = new double[n];
            double[] z = new double[n];

            for (int ip = 0; ip < n; ip++)
            {
                for (int iq = 0; iq < n; iq++)
                {
                    v[ip, iq] = 0.0;
                }
                v[ip, ip] = 1.0;
            }
            for (int ip = 0; ip < n; ip++)
            {
                b[ip] = d[ip] = a[ip, ip];
                z[ip] = 0.0;
            }
            for (int i = 1; i <= 50; i++)
            {
                double sm = 0.0;
                for (int ip = 0; ip < n - 1; ip++)
                {
                    for (int iq = ip + 1; iq < n; iq++)
                    {
                        sm += Math.Abs(a[ip, iq]);
                    }
                }
                //if (sm == 0.0)
                if (Math.Abs(sm) <= float.Epsilon)
                {
                    eigsrt( d,  v);
                    return;
                }
                double tresh;
                if (i < 4)
                {
                    tresh = 0.2 * sm / (n * n);
                }
                else
                {
                    tresh = 0.0;
                }
                for (int ip = 0; ip < n - 1; ip++)
                {
                    for (int iq = ip + 1; iq < n; iq++)
                    {
                        double g = 100.0 * Math.Abs(a[ip, iq]);
                        if (i > 4 && g <= EPS * Math.Abs(d[ip]) && g <= EPS * Math.Abs(d[iq]))
                        {
                            a[ip, iq] = 0.0;
                        }
                        else if (Math.Abs(a[ip, iq]) > tresh)
                        {
                            double h = d[iq] - d[ip];
                            double t;
                            if (g <= EPS * Math.Abs(h))
                            {
                                t = (a[ip, iq]) / h;
                            }
                            else
                            {
                                double theta = 0.5 * h / (a[ip, iq]);
                                t = 1.0 / (Math.Abs(theta) + Math.Sqrt(1.0 + theta * theta));
                                if (theta < 0.0)
                                {
                                    t = -t;
                                }
                            }
                            double c = 1.0 / Math.Sqrt(1 + t * t);
                            double s = t * c;
                            double tau = s / (1.0 + c);
                            h = t * a[ip, iq];
                            z[ip] -= h;
                            z[iq] += h;
                            d[ip] -= h;
                            d[iq] += h;
                            a[ip, iq] = 0.0;
                            for (int j = 0; j < ip; j++)
                            {
                                rot( a, s, tau, j, ip, j, iq);
                            }
                            for (int j = ip + 1; j < iq; j++)
                            {
                                rot( a, s, tau, ip, j, j, iq);
                            }
                            for (int j = iq + 1; j < n; j++)
                            {
                                rot( a, s, tau, ip, j, iq, j);
                            }
                            for (int j = 0; j < n; j++)
                            {
                                rot( v, s, tau, j, ip, j, iq);
                            }
                            ++nrot;
                        }
                    }
                }
                for (int ip = 0; ip < n; ip++)
                {
                    b[ip] += z[ip];
                    d[ip] = b[ip];
                    z[ip] = 0.0;
                }
            }
            throw new Exception("Too many iterations in routine jacobi");
        }

        public void rot(double[,] a, double s, double tau, int i, int j, int k, int l)
        {
            double g = a[i, j];
            double h = a[k, l];
            a[i, j] = g - s * (h + g * tau);
            a[k, l] = h + s * (g - h * tau);
        }

        /// <summary>
        /// Given the eigenvalues d[0..n - 1] and(optionally) the eigenvectors
        /// v[0..n - 1][0..n - 1] as determined by Jacobi or tqli, this routine sorts the
        /// eigenvalues into descending order and rearranges the columns of v
        /// correspondingly.The method is straight insertion.
        /// </summary>
        /// <param name="d"></param>
        /// <param name="v"></param>
        public static void eigsrt(double[] d, double[,] v)
        {
            int k;
            int n = d.Length;
            for (int i = 0; i < n - 1; i++)
            {
                double p = d[k = i];
                for (int j = i; j < n; j++)
                {
                    if (d[j] >= p)
                    {
                        p = d[k = j];
                    }
                }
                if (k != i)
                {
                    d[k] = d[i];
                    d[i] = p;
                    if (v != null)
                    {
                        for (int j = 0; j < n; j++)
                        {
                            p = v[j, i];
                            v[j, i] = v[j, k];
                            v[j, k] = p;
                        }
                    }
                }
            }
        }
    }
}
 

2 代码格式

using System;namespace Legalsoft.Truffer
{/// <summary>/// Computes all eigenvalues and eigenvectors of/// a real symmetric matrix by Jacobi's method./// </summary>public class Jacobi{private int n { get; set; }private double[,] a;private double[,] v;private double[] d;private int nrot { get; set; }private double EPS { get; set; }/// <summary>/// Computes all eigenvalues and eigenvectors of a real symmetric matrix/// a[0..n - 1][0..n - 1]. On output, d[0..n - 1] contains the eigenvalues of a/// sorted into descending order, while v[0..n - 1][0..n - 1] is a matrix whose/// columns contain the corresponding normalized eigenvectors.nrot contains/// the number of Jacobi rotations that were required.Only the upper triangle/// of a is accessed./// </summary>/// <param name="aa"></param>/// <exception cref="Exception"></exception>public Jacobi(double[,] aa){this.n = aa.GetLength(0);this.a = aa;this.v = new double[n, n];this.d = new double[n];this.nrot = 0;this.EPS = float.Epsilon;double[] b = new double[n];double[] z = new double[n];for (int ip = 0; ip < n; ip++){for (int iq = 0; iq < n; iq++){v[ip, iq] = 0.0;}v[ip, ip] = 1.0;}for (int ip = 0; ip < n; ip++){b[ip] = d[ip] = a[ip, ip];z[ip] = 0.0;}for (int i = 1; i <= 50; i++){double sm = 0.0;for (int ip = 0; ip < n - 1; ip++){for (int iq = ip + 1; iq < n; iq++){sm += Math.Abs(a[ip, iq]);}}//if (sm == 0.0)if (Math.Abs(sm) <= float.Epsilon){eigsrt( d,  v);return;}double tresh;if (i < 4){tresh = 0.2 * sm / (n * n);}else{tresh = 0.0;}for (int ip = 0; ip < n - 1; ip++){for (int iq = ip + 1; iq < n; iq++){double g = 100.0 * Math.Abs(a[ip, iq]);if (i > 4 && g <= EPS * Math.Abs(d[ip]) && g <= EPS * Math.Abs(d[iq])){a[ip, iq] = 0.0;}else if (Math.Abs(a[ip, iq]) > tresh){double h = d[iq] - d[ip];double t;if (g <= EPS * Math.Abs(h)){t = (a[ip, iq]) / h;}else{double theta = 0.5 * h / (a[ip, iq]);t = 1.0 / (Math.Abs(theta) + Math.Sqrt(1.0 + theta * theta));if (theta < 0.0){t = -t;}}double c = 1.0 / Math.Sqrt(1 + t * t);double s = t * c;double tau = s / (1.0 + c);h = t * a[ip, iq];z[ip] -= h;z[iq] += h;d[ip] -= h;d[iq] += h;a[ip, iq] = 0.0;for (int j = 0; j < ip; j++){rot( a, s, tau, j, ip, j, iq);}for (int j = ip + 1; j < iq; j++){rot( a, s, tau, ip, j, j, iq);}for (int j = iq + 1; j < n; j++){rot( a, s, tau, ip, j, iq, j);}for (int j = 0; j < n; j++){rot( v, s, tau, j, ip, j, iq);}++nrot;}}}for (int ip = 0; ip < n; ip++){b[ip] += z[ip];d[ip] = b[ip];z[ip] = 0.0;}}throw new Exception("Too many iterations in routine jacobi");}public void rot(double[,] a, double s, double tau, int i, int j, int k, int l){double g = a[i, j];double h = a[k, l];a[i, j] = g - s * (h + g * tau);a[k, l] = h + s * (g - h * tau);}/// <summary>/// Given the eigenvalues d[0..n - 1] and(optionally) the eigenvectors/// v[0..n - 1][0..n - 1] as determined by Jacobi or tqli, this routine sorts the/// eigenvalues into descending order and rearranges the columns of v/// correspondingly.The method is straight insertion./// </summary>/// <param name="d"></param>/// <param name="v"></param>public static void eigsrt(double[] d, double[,] v){int k;int n = d.Length;for (int i = 0; i < n - 1; i++){double p = d[k = i];for (int j = i; j < n; j++){if (d[j] >= p){p = d[k = j];}}if (k != i){d[k] = d[i];d[i] = p;if (v != null){for (int j = 0; j < n; j++){p = v[j, i];v[j, i] = v[j, k];v[j, k] = p;}}}}}}
}

这篇关于C#,数值计算——计算实对称矩阵所有特征值和特征向量的雅可比(Jacobi)方法与源程序的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/457011

相关文章

MyBatis-Plus通用中等、大量数据分批查询和处理方法

《MyBatis-Plus通用中等、大量数据分批查询和处理方法》文章介绍MyBatis-Plus分页查询处理,通过函数式接口与Lambda表达式实现通用逻辑,方法抽象但功能强大,建议扩展分批处理及流式... 目录函数式接口获取分页数据接口数据处理接口通用逻辑工具类使用方法简单查询自定义查询方法总结函数式接口

MySQL深分页进行性能优化的常见方法

《MySQL深分页进行性能优化的常见方法》在Web应用中,分页查询是数据库操作中的常见需求,然而,在面对大型数据集时,深分页(deeppagination)却成为了性能优化的一个挑战,在本文中,我们将... 目录引言:深分页,真的只是“翻页慢”那么简单吗?一、背景介绍二、深分页的性能问题三、业务场景分析四、

JAVA中安装多个JDK的方法

《JAVA中安装多个JDK的方法》文章介绍了在Windows系统上安装多个JDK版本的方法,包括下载、安装路径修改、环境变量配置(JAVA_HOME和Path),并说明如何通过调整JAVA_HOME在... 首先去oracle官网下载好两个版本不同的jdk(需要登录Oracle账号,没有可以免费注册)下载完

C#连接SQL server数据库命令的基本步骤

《C#连接SQLserver数据库命令的基本步骤》文章讲解了连接SQLServer数据库的步骤,包括引入命名空间、构建连接字符串、使用SqlConnection和SqlCommand执行SQL操作,... 目录建议配合使用:如何下载和安装SQL server数据库-CSDN博客1. 引入必要的命名空间2.

Java中读取YAML文件配置信息常见问题及解决方法

《Java中读取YAML文件配置信息常见问题及解决方法》:本文主要介绍Java中读取YAML文件配置信息常见问题及解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要... 目录1 使用Spring Boot的@ConfigurationProperties2. 使用@Valu

Java 方法重载Overload常见误区及注意事项

《Java方法重载Overload常见误区及注意事项》Java方法重载允许同一类中同名方法通过参数类型、数量、顺序差异实现功能扩展,提升代码灵活性,核心条件为参数列表不同,不涉及返回类型、访问修饰符... 目录Java 方法重载(Overload)详解一、方法重载的核心条件二、构成方法重载的具体情况三、不构

SQL中如何添加数据(常见方法及示例)

《SQL中如何添加数据(常见方法及示例)》SQL全称为StructuredQueryLanguage,是一种用于管理关系数据库的标准编程语言,下面给大家介绍SQL中如何添加数据,感兴趣的朋友一起看看吧... 目录在mysql中,有多种方法可以添加数据。以下是一些常见的方法及其示例。1. 使用INSERT I

Python中反转字符串的常见方法小结

《Python中反转字符串的常见方法小结》在Python中,字符串对象没有内置的反转方法,然而,在实际开发中,我们经常会遇到需要反转字符串的场景,比如处理回文字符串、文本加密等,因此,掌握如何在Pyt... 目录python中反转字符串的方法技术背景实现步骤1. 使用切片2. 使用 reversed() 函

Python中将嵌套列表扁平化的多种实现方法

《Python中将嵌套列表扁平化的多种实现方法》在Python编程中,我们常常会遇到需要将嵌套列表(即列表中包含列表)转换为一个一维的扁平列表的需求,本文将给大家介绍了多种实现这一目标的方法,需要的朋... 目录python中将嵌套列表扁平化的方法技术背景实现步骤1. 使用嵌套列表推导式2. 使用itert

C#读写文本文件的多种方式详解

《C#读写文本文件的多种方式详解》这篇文章主要为大家详细介绍了C#中各种常用的文件读写方式,包括文本文件,二进制文件、CSV文件、JSON文件等,有需要的小伙伴可以参考一下... 目录一、文本文件读写1. 使用 File 类的静态方法2. 使用 StreamReader 和 StreamWriter二、二进