C++——Traits编程技法

2023-12-05 07:38
文章标签 c++ 编程 traits 技法

本文主要是介绍C++——Traits编程技法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 

——这篇是直接根据侯捷老师的书写的,几乎没有自己加工的部分,不过也是学习的总结吧

Traits编程技法

按照顺序,这次应该是迭代器Iterator的内容了,然而Iterator涉及到一个重要的技巧就是Traits编程技法;它还是值得单独一章来介绍一下的。

一 获取Iterator的相应类型(associate type

在使用Iterator时,可能需要知道它的相应类型,也就是Iterator指向的变量的类型,在C/C++语言中,如果要获取一个变量的大小可以使用sizeof()操作符。然而如果想要获取一个指针指向的变量类型该如何做呢,可惜它没有一个typeof()操作符供我们程序员使用。

 

利用template的引数/参数推导(argument deducation)是一个解决问题的好方法,仅将func函数作为一个包装,而把实际的操作放在一个函数func_impl里面完成。一旦func()函数被调用,编译器就自动进行引数推导,自动导出类型T

 

template <class I>

inline void func(I iter)

{

    func_impl(iter, *iter); // 一层封装

}

 

template <class I, class T>

void func_impl(I iter, T t)

{

    T tmp; // 在本例中,t就是int类型

    tmp = t;

    cout<<tmp<<endl; // tmpint类型,可以直接输出

}

 

int main()

{

    int i = 4;

    func(&i);

    return 0;

}

 

看上去不错,虽然多了一层包装,但是还是可以工作的很好。好了,现在想想另一种情况,如果要将这个类型作为一个函数,比如上面的func的返回类型,该怎么办呢。毕竟引数推导导出的只是引数,没有办法应用于函数的返回值。看来我们需要另外的方法来解决这一问题,这就引出了本章的一个重要技巧Traits编程技法。

 

 Traits编程技法初见

采用nested type(巢状型别)似乎是个不错的注意,如下所示:

 

template <class T>

class Iterator

{

public:

    typedef T value_type;

    T *m_ptr;

    Iterator(T *p = 0) : m_ptr(p) {}

    T& operator *() const {return *m_ptr;}

    // ...

};

 

template <class I>

typename I::value_type func2(I iter)

{

    return *iter;

}

 

int main()

{

    int *p = new int(8);

    Iterator<int> iter(p);

    cout<<func2(iter)<<endl;

    delete p;

    return 0;

}

这里func2函数的返回值前加上了一个typename,这是因为在template T实例化之前,编译器对T一无所知,并不知道Iterator<int>::value_type代表的是一个函数,变量还是类型。关键字typename就是告诉编译器说这是一个类型,以使得编译通过。

看起来不错,但是这里还有一个隐晦的陷阱:并不是所有的迭代器都有value_type,编译器内嵌类型(原生指标)就没有,这样编译就不能通过,但是STL必须接受原生指标作为一种迭代器,这需要另外的技巧,它就是模板偏特化(template partial specialization

 

转载自:http://blog.csdn.net/sparkliang/archive/2009/03/20/4008096.aspx

 

补充:

 什么是C++ Traits? 并举例说明

首先假如有以下一个泛型的迭代器类,其中类型参数 T 为迭代器所指向的类型:

template
  <typename   T>
class   myIterator
{
 ...
};

当我们使用myIterator时,怎样才能获知它所指向的元素的类型呢?我们可以为这个类加入一个内嵌类型,像这样:
template   <typename   T>
class   myIterator
{
      
typedef  T value_type; 
...
};
这样当我们使用myIterator类型时,可以通过 myIterator::value_type来获得相应的myIterator所指向的类型。

现在我们来设计一个算法,使用这个信息。
template   <typename T>
typename
  myIterator<T>::value_type Foo(myIterator<T> i)
{
 ...
}
这里我们定义了一个函数Foo,它的返回为为  参数i 所指向的类型,也就是T,那么我们为什么还要兴师动众的使用那个value_type呢? 那是因为,当我们希望修改Foo函数,使它能够适应所有类型的迭代器时,我们可以这样写:
template   <typename I>   //这里的I可以是任意类型的迭代器
typename   I::value_type Foo(I i)
{
 ...
}
现在,任意定义了 value_type内嵌类型的迭代器都可以做为Foo的参数了,并且Foo的返回值的类型将与相应迭代器所指的元素的类型一致。至此一切问题似乎都已解决,我们并没有使用任何特殊的技术。然而当考虑到以下情况时,新的问题便显现出来了:

原生指针也完全可以做为迭代器来使用,然而我们显然没有办法为原生指针添加一个value_type的内嵌类型,如此一来我们的Foo()函数就不能适用原生指针了,这不能不说是一大缺憾。那么有什么办法可以解决这个问题呢? 此时便是我们的主角:类型信息榨取机 Traits 登场的时候了

我们可以不直接使用myIteratorvalue_type,而是通过另一个类来把这个信息提取出来:
template   <typename   T>
class Traits
{
      
typedef typename T::value_type value_type;
};

这样,我们可以通过 Traits<myIterator>::value_type 来获得myIteratorvalue_type,于是我们把Foo函数改写成:
template   <typename I>   //这里的I可以是任意类型的迭代器
typename   Traits<I>::value_type Foo(I i)
{
 ...
}
然而,即使这样,那个原生指针的问题仍然没有解决,因为Trait类一样没办法获得原生指针的相关信息。于是我们祭出C++的又一件利器--偏特化(partial specialization)
template   <typename   T>
class Traits<T*> 
//注意 这里针对原生指针进行了偏特化
{
      
typedef   typename   T value_type;
};
通过上面这个 Traits的偏特化版本,我们陈述了这样一个事实:一个 T* 类型的指针所指向的元素的类型为 T

如此一来,我们的 Foo函数就完全可以适用于原生指针了。比如:
int   * p;
....
int   i = Foo(p);
Traits
会自动推导出 p 所指元素的类型为 int,从而Foo正确返回。

 

这篇关于C++——Traits编程技法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/456723

相关文章

C++ RabbitMq消息队列组件详解

《C++RabbitMq消息队列组件详解》:本文主要介绍C++RabbitMq消息队列组件的相关知识,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1. RabbitMq介绍2. 安装RabbitMQ3. 安装 RabbitMQ 的 C++客户端库4. A

C++ HTTP框架推荐(特点及优势)

《C++HTTP框架推荐(特点及优势)》:本文主要介绍C++HTTP框架推荐的相关资料,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1. Crow2. Drogon3. Pistache4. cpp-httplib5. Beast (Boos

C++类和对象之初始化列表的使用方式

《C++类和对象之初始化列表的使用方式》:本文主要介绍C++类和对象之初始化列表的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C++初始化列表详解:性能优化与正确实践什么是初始化列表?初始化列表的三大核心作用1. 性能优化:避免不必要的赋值操作2. 强

C++迭代器失效的避坑指南

《C++迭代器失效的避坑指南》在C++中,迭代器(iterator)是一种类似指针的对象,用于遍历STL容器(如vector、list、map等),迭代器失效是指在对容器进行某些操作后... 目录1. 什么是迭代器失效?2. 哪些操作会导致迭代器失效?2.1 vector 的插入操作(push_back,

Python 异步编程 asyncio简介及基本用法

《Python异步编程asyncio简介及基本用法》asyncio是Python的一个库,用于编写并发代码,使用协程、任务和Futures来处理I/O密集型和高延迟操作,本文给大家介绍Python... 目录1、asyncio是什么IO密集型任务特征2、怎么用1、基本用法2、关键字 async1、async

Java并发编程之如何优雅关闭钩子Shutdown Hook

《Java并发编程之如何优雅关闭钩子ShutdownHook》这篇文章主要为大家详细介绍了Java如何实现优雅关闭钩子ShutdownHook,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起... 目录关闭钩子简介关闭钩子应用场景数据库连接实战演示使用关闭钩子的注意事项开源框架中的关闭钩子机制1.

C#如何调用C++库

《C#如何调用C++库》:本文主要介绍C#如何调用C++库方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录方法一:使用P/Invoke1. 导出C++函数2. 定义P/Invoke签名3. 调用C++函数方法二:使用C++/CLI作为桥接1. 创建C++/CL

C++如何通过Qt反射机制实现数据类序列化

《C++如何通过Qt反射机制实现数据类序列化》在C++工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作,所以本文就来聊聊C++如何通过Qt反射机制实现数据类序列化吧... 目录设计预期设计思路代码实现使用方法在 C++ 工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作。由于数据类

Linux下如何使用C++获取硬件信息

《Linux下如何使用C++获取硬件信息》这篇文章主要为大家详细介绍了如何使用C++实现获取CPU,主板,磁盘,BIOS信息等硬件信息,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录方法获取CPU信息:读取"/proc/cpuinfo"文件获取磁盘信息:读取"/proc/diskstats"文

C++使用printf语句实现进制转换的示例代码

《C++使用printf语句实现进制转换的示例代码》在C语言中,printf函数可以直接实现部分进制转换功能,通过格式说明符(formatspecifier)快速输出不同进制的数值,下面给大家分享C+... 目录一、printf 原生支持的进制转换1. 十进制、八进制、十六进制转换2. 显示进制前缀3. 指