详解卷积神经网络(Convolutional Neural Networks, CNNs)

2023-12-05 06:36

本文主要是介绍详解卷积神经网络(Convolutional Neural Networks, CNNs),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

全连接神经网络基础

全连接神经网络(Fully Connected Neural Network 或 Multi-Layer Perceptron, MLP)是最简单的深度学习模型之一。一个典型的全连接网络由多个层组成,每一层包含多个神经元或节点。每个神经元与上一层的所有神经元相连,并通过激活函数产生输出。

全连接网络的每一层都执行以下操作:

  1. 接收来自上一层(或输入层)的输入。
  2. 将输入与该层的权重进行矩阵相乘。
  3. 加上一定的偏置项。
  4. 通过激活函数生成激活值。

在传统的全连接网络中,最常见的激活函数是Sigmoid、Tanh、ReLU等。

为什么全连接神经网络是卷积神经网络的基础?

全连接神经网络是理解复杂网络结构的基础。它教会我们如何堆叠层,如何通过反向传播调整权重,以及如何利用激活函数引入非线性。这些基础概念在卷积神经网络中同样适用。

卷积神经网络(Convolutional Neural Networks, CNNs)

卷积神经网络是专门用来处理具有网格结构输入的神经网络,例如图像(2D网格),声音信号(1D网格)等。CNN通过引入卷积层显著减少了模型参数的数量,并能够学习输入数据的局部特征。

卷积层 (Convolutional Layer)

卷积层通过一组可学习的卷积核(也称为过滤器或特征检测器)来提取特征。每个卷积核在输入图像上滑动(或卷积操作),并生成特征图(也称为激活图)。这允许网络专注于图像的局部信息,并且具有平移不变性。

池化层(Pooling Layer)

池化层通常位于连续的卷积层之间,用于降低特征图的空间维度,增强网络对小的变化的不变性,并减少计算量。最常见的池化操作是最大池化,它从覆盖的区域中提取最大值。

全连接层(Fully Connected Layer)

全连接层通常位于CNN的末尾,它们的作用是将前面卷积层和池化层学习到的局部特征组合起来完成特定的任务,比如分类。

激活函数

像全连接网络一样,CNN的卷积层和全连接层之后也会跟有激活函数,ReLU是现代CNNs中最常用的激活函数之一,因为它能够加速训练且防止梯度消失问题。

使用PyTorch搭建卷积神经网络

PyTorch是一个流行的开源机器学习库,尤其在研究领域受到青睐。下面是一个使用PyTorch搭建简单卷积神经网络的示例代码,带有详细的中文注释:

import torch
import torch.nn as nn
import torch.nn.functional as F# 定义CNN模型的类
class SimpleCNN(nn.Module):def __init__(self):super(SimpleCNN, self).__init__()# 卷积层1,使用了32个3x3的卷积核self.conv1 = nn.Conv2d(in_channels=1, out_channels=32, kernel_size=3, padding=1)# 卷积层2,使用了64个3x3的卷积核self.conv2 = nn.Conv2d(32, 64, 3, padding=1)# 最大池化层,使用了2x2的池化窗口self.pool = nn.MaxPool2d(kernel_size=2, stride=2)# 全连接层1,输入特征数量必须与前一层的输出相匹配# 这里的输入特征数量视乎前面层数和池化后的结果而定self.fc1 = nn.Linear(64 * 7 * 7, 128)# 全连接层2,用作输出层,假设我们要分类10个类别self.fc2 = nn.Linear(128, 10)# 定义前向传播路径def forward(self, x):# 经过第一个卷积层后使用ReLU激活函数x = F.relu(self.conv1(x))# 经过最大池化层x = self.pool(x)# 经过第二个卷积层后使用ReLU激活函数x = F.relu(self.conv2(x))# 经过最大池化层x = self.pool(x)# 将多维数据展平为一维,准备输入全连接层x = x.view(-1, 64 * 7 * 7)# 经过第一个全连接层后使用ReLU激活函数x = F.relu(self.fc1(x))# 经过输出层,并不使用激活函数,因为这里输出的是分类结果x = self.fc2(x)return x# 创建模型实例
model = SimpleCNN()# 打印模型结构
print(model)

以上代码中,我们构建了一个简单的卷积神经网络,它有2个卷积层,2个池化层以及完全连接的层。在实践中,您可能需要根据输入数据的大小和目标任务调整网络的大小和复杂性。例如,如果您处理的是更高分辨率的图像,您可能需要更多的卷积层或者更大的全连接层。

请注意,在实际应用中搭建CNN时,计算输入特征数量给全连接层是一个重要步骤,需要根据您的输入数据和之前层的设置来手动计算。例如,在上面的代码中,逻辑是假设输入的图像大小是28x28像素,经过两次2x2的池化后,其大小变为7x7像素(原大小除以池化窗口stride的大小的平方),因此在全连接层fc1中的输入特征数量必须设置为64(第二个卷积层的输出通道数)乘以7乘以7(池化后的图像大小)。

如果你想更深入地了解人工智能的其他方面,比如机器学习、深度学习、自然语言处理等等,也可以点击这个链接,我按照如下图所示的学习路线为大家整理了100多G的学习资源,基本涵盖了人工智能学习的所有内容,包括了目前人工智能领域最新顶会论文合集和丰富详细的项目实战资料,可以帮助你入门和进阶。

链接: 人工智能交流群【最新顶会与项目实战】(点击跳转)

在这里插入图片描述

这篇关于详解卷积神经网络(Convolutional Neural Networks, CNNs)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/456543

相关文章

Redis 的 SUBSCRIBE命令详解

《Redis的SUBSCRIBE命令详解》Redis的SUBSCRIBE命令用于订阅一个或多个频道,以便接收发送到这些频道的消息,本文给大家介绍Redis的SUBSCRIBE命令,感兴趣的朋友跟随... 目录基本语法工作原理示例消息格式相关命令python 示例Redis 的 SUBSCRIBE 命令用于订

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e

SpringBoot日志级别与日志分组详解

《SpringBoot日志级别与日志分组详解》文章介绍了日志级别(ALL至OFF)及其作用,说明SpringBoot默认日志级别为INFO,可通过application.properties调整全局或... 目录日志级别1、级别内容2、调整日志级别调整默认日志级别调整指定类的日志级别项目开发过程中,利用日志

Java中的抽象类与abstract 关键字使用详解

《Java中的抽象类与abstract关键字使用详解》:本文主要介绍Java中的抽象类与abstract关键字使用详解,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录一、抽象类的概念二、使用 abstract2.1 修饰类 => 抽象类2.2 修饰方法 => 抽象方法,没有

MySQL8 密码强度评估与配置详解

《MySQL8密码强度评估与配置详解》MySQL8默认启用密码强度插件,实施MEDIUM策略(长度8、含数字/字母/特殊字符),支持动态调整与配置文件设置,推荐使用STRONG策略并定期更新密码以提... 目录一、mysql 8 密码强度评估机制1.核心插件:validate_password2.密码策略级

从入门到精通详解Python虚拟环境完全指南

《从入门到精通详解Python虚拟环境完全指南》Python虚拟环境是一个独立的Python运行环境,它允许你为不同的项目创建隔离的Python环境,下面小编就来和大家详细介绍一下吧... 目录什么是python虚拟环境一、使用venv创建和管理虚拟环境1.1 创建虚拟环境1.2 激活虚拟环境1.3 验证虚

详解python pycharm与cmd中制表符不一样

《详解pythonpycharm与cmd中制表符不一样》本文主要介绍了pythonpycharm与cmd中制表符不一样,这个问题通常是因为PyCharm和命令行(CMD)使用的制表符(tab)的宽... 这个问题通常是因为PyCharm和命令行(CMD)使用的制表符(tab)的宽度不同导致的。在PyChar

sky-take-out项目中Redis的使用示例详解

《sky-take-out项目中Redis的使用示例详解》SpringCache是Spring的缓存抽象层,通过注解简化缓存管理,支持Redis等提供者,适用于方法结果缓存、更新和删除操作,但无法实现... 目录Spring Cache主要特性核心注解1.@Cacheable2.@CachePut3.@Ca

SpringBoot请求参数传递与接收示例详解

《SpringBoot请求参数传递与接收示例详解》本文给大家介绍SpringBoot请求参数传递与接收示例详解,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋... 目录I. 基础参数传递i.查询参数(Query Parameters)ii.路径参数(Path Va