空间相关分析(三) 局部莫兰指数的理解与计算

2023-12-05 05:08

本文主要是介绍空间相关分析(三) 局部莫兰指数的理解与计算,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

        在上篇中,我们详细地阐述了全局莫兰指数(Global Moran’I)的含义以及具体的软件实操方法。今天,就来进一步地说明局部莫兰指数(Local Moran’I)的含义与计算。

        首先说明一下进行局部相关分析的必要性:

  1. 在全局相关分析中,如果全局莫兰指数显著,我们即可认为在该区域上存在空间相关性。但是,我们还是不知道具体在哪儿些地方存在着空间聚集现象。这个时候就需要局部莫兰指数参与帮助说明。
  2. 即使全局莫兰指数为0,在局部上也不一定就没有空间聚集现象!(上篇博客中,学生的成绩的例子足以说明,在此不再赘述)

目录

        • 一、公式说明
        • 二、Moran'I散点图
        • 三、LISA聚集图

一、公式说明

        还是先从公式入手进行理解,相比全局莫兰指数,局部莫兰指数的计算方式要简洁许多,其计算方式如下:
I i = Z i S 2 ∑ j ≠ i n w i j Z j \mathit{I_{i}=\frac{Z_{i}}{S^2}\sum\limits_{j\not=i}^{n}w_{ij}Z_{j}} Ii=S2Zij=inwijZj
        其中, Z i = y i − y ˉ Z_{i}=y_{i}-\bar{y} Zi=yiyˉ Z j = y j − y ˉ Z_{j}=y_{j}-\bar{y} Zj=yjyˉ S 2 = 1 n ∑ ( y i − y ˉ ) 2 S^2=\frac{1}{n}\sum{(y_i-\bar{y})^2} S2=n1(yiyˉ)2 w i j w_{ij} wij为空间权重值, n n n为研究区域上所有地区的总数, I i I_{i} Ii则代表第 i {i} i个地区的局部莫兰指数。为了方便理解,这里的 y i ( j ) y_{i(j)} yi(j)还是代表第 i ( j ) i(j) i(j)地区的人均GDP,并将求和号展开( S 2 S^2 S2总是正的,相当于只是对整个式子进行标准化而已,故这里省略了):
I i = ( y i − y ˉ ) [ w i 1 ( y 1 − y ˉ ) + w i 2 ( y 2 − y ˉ ) + . . . w i ( i − 1 ) ( y i − 1 − y ˉ ) + w i ( i + 1 ) ( y i + 1 − y ˉ ) + . . . + w i n ( y n − y ˉ ) ] I_{i}=(y_{i}-\bar{y})[w_{i1}(y_{1}-\bar{y})+w_{i2}(y_{2}-\bar{y})+...w_{i(i-1)}(y_{i-1}-\bar{y})+w_{i(i+1)}(y_{i+1}-\bar{y})+...+w_{in}(y_{n}-\bar{y})] Ii=(yiyˉ)[wi1(y1yˉ)+wi2(y2yˉ)+...wi(i1)(yi1yˉ)+wi(i+1)(yi+1yˉ)+...+win(ynyˉ)]

        从上式不难看出, I i I_{i} Ii的正负取决于 y i − y ˉ y_{i}-\bar{y} yiyˉ和后面那一坨。前者可反映出第 i i i个地区的经济发展水平与整个区域的平均水平之间的高低情况,后者则反映出第 i i i个地区的周边地区与整个区域水平之间的高低情况。两个式子都有高低两种可能性,两两组合,共有四种情况。

以表格的方式呈现如下:

Z i Z_{i} Zi ∑ j ≠ i n w i j Z j \sum\limits_{j\not=i}^{n}w_{ij}Z_{j} j=inwijZj I i I_{i} Ii含义
>0>0>0第i个地区经济发展水平高,周边地区发展水平高
<0<0>0第i个地区经济发展水平低,周边地区发展水平低
<0>0<0第i个地区经济发展水平低,周边地区发展水平高
>0<0<0第i个地区经济发展水平高,周边地区发展水平低

关于局部莫兰指数的范围问题在此进行说明:
大部分文献中指出的莫兰指数都是全局莫兰指数,它的范围是-1到1,而局部莫兰指数的范围是没有限制的!详细可参考王庆喜的《区域经济研究实用方法:基于Arcgis,Geoda和R运用》,如下图所示:
在这里插入图片描述

二、Moran’I散点图

当然,将上表内容以可视化的方式呈现,就得到了Moran’I散点图。以 Z i Z_{i} Zi为x轴, ∑ j ≠ i n w i j Z j \sum\limits_{j\not=i}^{n}w_{ij}Z_{j} j=inwijZj为y轴,将平面区域划分为四个象限,如下图所示:
在这里插入图片描述
这里还是以2018年人均GDP为基础数据,利用Geoda进行局部相关分析。操作过程如下:
导入空间权重矩阵——空间分析——单变量局部Moran’I分析
在这里插入图片描述
选择PGDP2018后,弹出以下对话框,这里我们先选择Moran散点图
在这里插入图片描述
细心地小伙伴可能会发现,下面这张图和全局莫兰指数得到的图是一样的!(emm.上面的那个moran’I 是全局莫兰指数,下面这些散点的横纵坐标的乘积就是各个区县的局部莫兰指数。相当于,一张图涵盖了两种指数的信息。
在这里插入图片描述
        简单对这张图分析一下:从局部相关的角度来看,第一、三象限的点明显多于第二、四象限的点,即表示"低—低"型和"高—高"型聚集的区县较"高—低"型、"低—高"型的区县更多。更简单地来说,即经济较低(高)的区县在空间上更易聚集。从差异的角度来看,若"低—低"型和"高—高"型区县数量多,即说明此时的空间差异较小。(类比,你胖,周围人也胖,是不是你就胖的不明显啦

顺便提一下,既然全局莫兰指数和局部莫兰指数都称莫兰指数,两者肯定是有关系的,数学公式表达如下:
I = ∑ i I i S 0 ∑ i Z i n I=\frac{\sum\limits_{i}I_{i}}{S_{0}\frac{\sum\limits_{i}{Z_i}}{n}} I=S0niZiiIi

更多详细的内容,有兴趣的小伙伴可参考:
Anselin L . Local Indicators of Spatial Association—LISA[J]. Geographical analysis, 1995, 27(2):93-115.

三、LISA聚集图

说到这儿,好像还没说局部莫兰指数怎么检验吧!其实,检验方法一样还是利用Z检验:
Z i = I i − E ( I i ) v a r ( I i ) Z_{i}=\frac{I_{i}-E(I_{i})}{\sqrt{var(I_{i})}} Zi=var(Ii) IiE(Ii)
其实,上面那个moran’I散点图并没有对各个区县的局部莫兰指数进行检验,LISA聚集图在就在给定的显著性水平下,对于那些通过显著性检验的区县以地图的方式呈现出来,绘制的LISA聚集图如下:

左图为重庆市区县经济发展水平LISA聚集图,右图为行政区地图

Geoda就这一点不好,没法将区县名显示在LISA聚集图上。(有该需要的可以用Arcgis实现

从上图不难看出,重庆市经济发展水平较高的都聚集在渝西南地区,经济水平较低的大多聚集在渝东北地区,少部分聚集在渝东南地区,此外,"高-低"型和"低-高"型聚集区县并没有呈现出来。(若想更全面地展现经济水平聚集情况,光是人均GDP这一个指标肯定是远远不够的)

以上就是本次分享的全部内容~

这篇关于空间相关分析(三) 局部莫兰指数的理解与计算的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/456274

相关文章

Python实现精确小数计算的完全指南

《Python实现精确小数计算的完全指南》在金融计算、科学实验和工程领域,浮点数精度问题一直是开发者面临的重大挑战,本文将深入解析Python精确小数计算技术体系,感兴趣的小伙伴可以了解一下... 目录引言:小数精度问题的核心挑战一、浮点数精度问题分析1.1 浮点数精度陷阱1.2 浮点数误差来源二、基础解决

Three.js构建一个 3D 商品展示空间完整实战项目

《Three.js构建一个3D商品展示空间完整实战项目》Three.js是一个强大的JavaScript库,专用于在Web浏览器中创建3D图形,:本文主要介绍Three.js构建一个3D商品展... 目录引言项目核心技术1. 项目架构与资源组织2. 多模型切换、交互热点绑定3. 移动端适配与帧率优化4. 可

Python文本相似度计算的方法大全

《Python文本相似度计算的方法大全》文本相似度是指两个文本在内容、结构或语义上的相近程度,通常用0到1之间的数值表示,0表示完全不同,1表示完全相同,本文将深入解析多种文本相似度计算方法,帮助您选... 目录前言什么是文本相似度?1. Levenshtein 距离(编辑距离)核心公式实现示例2. Jac

Python中经纬度距离计算的实现方式

《Python中经纬度距离计算的实现方式》文章介绍Python中计算经纬度距离的方法及中国加密坐标系转换工具,主要方法包括geopy(Vincenty/Karney)、Haversine、pyproj... 目录一、基本方法1. 使用geopy库(推荐)2. 手动实现 Haversine 公式3. 使用py

Android 缓存日志Logcat导出与分析最佳实践

《Android缓存日志Logcat导出与分析最佳实践》本文全面介绍AndroidLogcat缓存日志的导出与分析方法,涵盖按进程、缓冲区类型及日志级别过滤,自动化工具使用,常见问题解决方案和最佳实... 目录android 缓存日志(Logcat)导出与分析全攻略为什么要导出缓存日志?按需过滤导出1. 按

深入理解go中interface机制

《深入理解go中interface机制》本文主要介绍了深入理解go中interface机制,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录前言interface使用类型判断总结前言go的interface是一组method的集合,不

Linux中的HTTPS协议原理分析

《Linux中的HTTPS协议原理分析》文章解释了HTTPS的必要性:HTTP明文传输易被篡改和劫持,HTTPS通过非对称加密协商对称密钥、CA证书认证和混合加密机制,有效防范中间人攻击,保障通信安全... 目录一、什么是加密和解密?二、为什么需要加密?三、常见的加密方式3.1 对称加密3.2非对称加密四、

MySQL中读写分离方案对比分析与选型建议

《MySQL中读写分离方案对比分析与选型建议》MySQL读写分离是提升数据库可用性和性能的常见手段,本文将围绕现实生产环境中常见的几种读写分离模式进行系统对比,希望对大家有所帮助... 目录一、问题背景介绍二、多种解决方案对比2.1 原生mysql主从复制2.2 Proxy层中间件:ProxySQL2.3

python使用Akshare与Streamlit实现股票估值分析教程(图文代码)

《python使用Akshare与Streamlit实现股票估值分析教程(图文代码)》入职测试中的一道题,要求:从Akshare下载某一个股票近十年的财务报表包括,资产负债表,利润表,现金流量表,保存... 目录一、前言二、核心知识点梳理1、Akshare数据获取2、Pandas数据处理3、Matplotl

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group