【matlab】QR分解

2023-12-05 02:20
文章标签 matlab 分解 qr

本文主要是介绍【matlab】QR分解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

QR分解

给定一个m×n的矩阵A,其中m≥n,即矩阵A是高矩阵或者是方阵,QR分解将矩阵A分解为两个矩阵Q和R的乘积,其中矩阵Q是一个m×n的各列正交的矩阵,即QTQ=I,矩阵R是一个n×n的上三角矩阵,其对角线元素为正。

如果矩阵A是方阵,且各列线性无关,那么Q是一个正交矩阵,即QTQ=QQT=I。

QR分解有多种算法实现,包括Gram-Schmidt正交化方法、Householder变换方法和Givens旋转方法等,下面我们介绍Gram-Schmidt正交化方法和Householder变换方法,并在MATLAB平台上使用这两种算法来实现QR分解。

Gram-Schmidt算法

对于给定的n维向量a1,a2,……,an,Gram-Schmidt算法可以解决将其标准正交化的问题,即将一个线性无关的向量组转化为一个正交向量组,使得每个向量都与前面的向量正交(垂直),并且可以检验a1,a2,……,an是否是线性相关。

Gram-Schmidt算法的步骤如下:

  • 初始化n维向量q1,q2,……,qn,其中q1=a1/||a1||2。
  • 对于每个向量ai,i=2:n,进行正交化处理:qi= ai-( q1Tai)q1-…-( qi-1Tai)qi-1。
  • 如果qi=0,说明ai是a1,a2,……,ai-1的一个线性组合,可以结束算法了。
  • 否则将qi进行单位化,qi=qi/||qi||2。

如果步骤③没有结束,那么说明a1,a2,……,an是线性无关的,而且得到了一个正交向量组q1,q2,……,qn。

Gram-Schmidt算法实现的QR分解

对于给定矩阵A,其列向量线性无关,Gram-Schmidt算法实现的QR分解步骤如下:

  • 对列向量a1,a2,……,an按照Gram-Schmidt方法进行正交化。
  • 对上一步得到的正交化向量组进行单位化得到各列正交的矩阵Q。
  • 根据A=QR,QTQ=I→R=QTA,得到上三角矩阵R

MATLAB验证Gram-Schmidt算法实现QR分解稳定性

通过直观的方法来观察到Gram-Schmidt QR分解的正交性偏差,理论上通过Gram-Schmidt算法后可以得到列向量线性无关的各列正交的矩阵Q,即QTQ=I,我们可以直接计算QTQ,看看计算结果与单位矩阵I的差距

左图是QTQ的计算结果,有图是单位矩阵I,可见由于浮点数存储的舍入误差,随着k增大,积累的误差越大,矩阵Q逐渐失去正交性

clc,clear;
load MatrixA.mat;
[m,n]=size(A);
Q=zeros(m,n);
R=zeros(n,n);
%% Gram-Schmidt QR分解
for k=1:nR(1:k-1,k)=Q(:,1:k-1)'*A(:,k);  %求出R(1,K) - R(K-1,K)v=A(:,k)-Q(:,1:k-1)*R(1:k-1,k); %求出正交化向量qR(k,k)=norm(v);                 %求出R(K,K)Q(:,k)=v/R(k,k);                %单位化向量q
end
%% 正交性偏差
figure(1);
E = zeros(1,n);
for k=2:nmax = 0;for i=1:k-1temp = abs(Q(:,i)' *  Q(:,k));if temp > maxmax = temp;endendE(1,k)=max;
end    
plot(E)
%% 比较QTQ和I
QTQ=Q'*Q;
figure(2);
for i=1:nfor j=1:nscatter3(i,j,QTQ(i,j),'red');hold on;end
end
zlim([0,1]);
I=eye(n);
figure(3);
for i=1:nfor j=1:nscatter3(i,j,I(i,j),'red');hold on;end
end
zlim([0,1]);

Householder变换

Householder变换是一种镜面反射变换,householder变换矩阵为H = I - 2wwT,如何理解这个变换矩阵呢,考虑向量w,那么有:

Hw = (I - 2wwT)w = w - 2w(wTw) = - w

这说明对于平行于w的向量,householder变换的作用是将其反向,再考虑与向量w垂直的向量v,即wTv=0,那么有:

Hv = (I - 2wwT)v = v - 2w(wTv) = v

这说明对于垂直于w的向量,householder变换的作用就是对其不起任何作用,那么对于一个普通的向量v来说,平行于w的分量被householder反向,垂直于w的分量不变,那么最终的效果就是将向量v作关于法向量为w的平面的镜像对称

 

基于Householder变换的QR分解

 因为H=H-1,所以A=H1H2,…,Hn-1R,即Q= H1H2,…,Hn-1,再根据A=QR,QTQ=I→R=QTA。

再来比较一下QTQ与单位矩阵I的差距,结果如图所示,左边的是计算出来的QTQ,右边是单位矩阵I

结果QTQ和I基本一样,可见相比其他分解方法,Householder算法能够减小舍入误差的累积,提高计算结果的稳定性。此外,该算法的时间复杂度较低,具备较高的计算效率。

clc,clear;
load MatrixA.mat;
[m,n]=size(A);
Q=zeros(m,n);
R=zeros(n,n);
%% Householder QR分解
[Q,R]=qr(A);    % matlab库函数就是用的Householder
%% 正交性偏差
figure(1);
E = zeros(1,n);
for k=2:nmax = 0;for i=1:k-1temp = abs(Q(:,i)' *  Q(:,k));if temp > maxmax = temp;endendE(1,k)=max;
end    
plot(E)
%% 比较QTQ和I
QTQ=Q'*Q;
figure(2);
for i=1:nfor j=1:nscatter3(i,j,QTQ(i,j),'red');hold on;end
end
zlim([0,1]);
I=eye(n);
figure(3);
for i=1:nfor j=1:nscatter3(i,j,I(i,j),'red');hold on;end
end
zlim([0,1]);

判断矩阵是否可逆

判断矩阵是否可逆有以下几种方法:

  • 存在一个矩阵B,使得AB=BA=I,确实可逆。
  • 矩阵行列式不为0,可逆。
  • 矩阵满秩,可逆。
  • 线性方程组Ax=0只有0解,可逆。
  • 线性方程组Ax=b只有特解,可逆。

实际上如果一个方阵可以进行QR分解,那么这个方阵也是可逆的。

所以我们直接尝试对矩阵B进行QR分解,如果可以进行QR分解,那么矩阵B可逆。那么我们可以先假设矩阵B是可以进行QR分解,然后我们对矩阵B进行QR分解,显然矩阵B是可以进行QR分解的,这说明矩阵B是可逆的。

求逆

我们之前使用过高斯消元法来求解矩阵的逆,实际上也可以使用QR分解求矩阵的逆。由A = QR,QTQ = I,则A-1 = (QR)-1 = R-1Q-1 = R-1QT。

那么A-1就可以通过R-1QT得到,但是实际上我们并不需要计算R-1,让x= R-1QT,那么我们目标就是要得到x的结果,因为RR-1QT=QT,即Rx=QT,那么我们就需要求解这个线性方程组,由于R是上三角矩阵,所以直接回代就可以求出x,即求出R-1QT,即求出了A-1。

我们先用Gram-Schmidt算法实现的QR分解求解矩阵B的逆,将其与用MATLAB内置的求逆函数结果进行比较,结果如图所示,红色的圆圈是matlab内置的求逆函数计算出来的结果,绿色实心点是我们QR分解求出来的结果,如果二者重合说明计算结果相同。

可以看到基本上绿色的点都和红色的圆圈重合了,可见Gram-Schmidt算法QR分解求逆效果不错。

clc,clear;
load MatrixB.mat;
[m,n]=size(B);
Q=zeros(m,n);
R=zeros(n,n);
%% Gram-Schmidt QR分解
for k=1:nR(1:k-1,k)=Q(:,1:k-1)'*B(:,k);  %求出R(1,K) - R(K-1,K)v=B(:,k)-Q(:,1:k-1)*R(1:k-1,k); %求出正交化向量qR(k,k)=norm(v);                 %求出R(K,K)Q(:,k)=v/R(k,k);                %单位化向量q
end
%% 求逆
inverseQR=R\Q';
inverse=inv(B);
%% 画图比较
for i=0:n-1for j=1:nscatter(i*n+j,inverse(i+1,j),'red');hold on;scatter(i*n+j,inverseQR(i+1,j),'green','.');hold on;end
end

我们再用之前的高斯消元法求解矩阵B的逆,将其与用MATLAB内置的求逆函数结果进行比较,结果如图所示

可见高斯消元法求逆的结果也很好,基本上绿色的点都和红色的圆圈重合了。

clc,clear;
load MatrixB.mat;
b=eye(50);
B_b=[B,b];
[n,m]=size(B_b);
for i=1:nfor j=m:-1:iB_b(i,j)=B_b(i,j)/B_b(i,i);endfor j=i+1:nfor k=m:-1:iB_b(j,k)=B_b(j,k)-B_b(j,i)*B_b(i,k);endend
%     fprintf('第%d次消元\n',i);
%     disp(rats(A_b));
end
for i=n-1:-1:1for j=i:-1:1for k=m:-1:n+1B_b(j,k)=B_b(j,k)-B_b(j,i+1)*B_b(i+1,k);endB_b(j,i+1)=0;end
%     fprintf('第%d次回代\n',n-i);
%     disp(rats(A_b));
end
gaussInverse=B_b(:,end-49:end);
inverse=inv(B);
%% 画图比较
for i=0:n-1for j=1:nscatter(i*n+j,inverse(i+1,j),'red');hold on;scatter(i*n+j,gaussInverse(i+1,j),'green','.');hold on;end
end

再用householder算法实现的QR分解求解矩阵B的逆,将其与用MATLAB内置的求逆函数结果进行比较,结果如图所示。

可见householder实现的QR分解求逆结果效果很好,基本上和matlab内置求逆函数结果相同,速度上也不慢。

clc,clear;
load MatrixB.mat;
[m,n]=size(B);
Q=zeros(m,n);
R=zeros(n,n);
%% Householder QR分解
[Q,R]=qr(B);    % matlab库函数就是用的Householder
%% 求逆
inverseQR=R\Q';
inverse=inv(B);
%% 画图比较
for i=0:n-1for j=1:nscatter(i*n+j,inverse(i+1,j),'red');hold on;scatter(i*n+j,inverseQR(i+1,j),'green','.');hold on;end
end

这篇关于【matlab】QR分解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/455788

相关文章

matlab读取NC文件(含group)

matlab读取NC文件(含group): NC文件数据结构: 代码: % 打开 NetCDF 文件filename = 'your_file.nc'; % 替换为你的文件名% 使用 netcdf.open 函数打开文件ncid = netcdf.open(filename, 'NC_NOWRITE');% 查看文件中的组% 假设我们想读取名为 "group1" 的组groupName

利用matlab bar函数绘制较为复杂的柱状图,并在图中进行适当标注

示例代码和结果如下:小疑问:如何自动选择合适的坐标位置对柱状图的数值大小进行标注?😂 clear; close all;x = 1:3;aa=[28.6321521955954 26.2453660695847 21.69102348512086.93747104431360 6.25442246899816 3.342835958564245.51365061796319 4.87

C# double[] 和Matlab数组MWArray[]转换

C# double[] 转换成MWArray[], 直接赋值就行             MWNumericArray[] ma = new MWNumericArray[4];             double[] dT = new double[] { 0 };             double[] dT1 = new double[] { 0,2 };

libsvm在matlab中的使用方法

原文地址:libsvm在matlab中的使用方法 作者: lwenqu_8lbsk 前段时间,gyp326曾在论坛里问libsvm如何在matlab中使用,我还奇怪,认为libsvm是C的程序,应该不能。没想到今天又有人问道,难道matlab真的能运行libsvm。我到官方网站看了下,原来,真的提供了matlab的使用接口。 接口下载在: http://www.csie.ntu.edu.

Matlab/Simulink中PMSM模型的反电动势系数和转矩系数

Matlab/Simulink中PMSM模型的反电动势系数和转矩系数_matlab pmsm-CSDN博客

MATLAB层次聚类分析法

转自:http://blog.163.com/lxg_1123@126/blog/static/74841406201022774051963/ 层次聚类是基于距离的聚类方法,MATLAB中通过pdist、linkage、dendrogram、cluster等函数来完成。层次聚类的过程可以分这么几步: (1) 确定对象(实际上就是数据集中的每个数据点)之间的相似性,实际上就是定义一个表征

MATLAB的fix(),floor()和ceil()函数的区别与联系

fix(x),floor(x)和ceil(x)函数都是对x取整,只不过取整方向不同而已。 这里的方向是以x轴作为横坐标来看的,向右就是朝着正轴方向,向左就是朝着负轴方向。 fix(x):向0取整(也可以理解为向中间取整) floor(x):向左取整 ceil(x):向右取整 举例: 4个数:a=3.3、b=3.7、c=-3.3、d=-3.7 fix(a)=3 fl

MATLAB中的eig函数

在MATLAB中,计算矩阵A的特征值和特征向量的函数是eig(A),常用的调用格式有5种: E=eig(A):求矩阵A的全部特征值,构成向量E。 [V,D]=eig(A):求矩阵A的全部特征值,构成对角阵D,并求A的特征向量构成V的列向量。 [V,D]=eig(A,'nobalance'):与第2种格式类似,但第2种格式中先对A作相似变换后求矩阵A的特征值和特征向量,而格式3直接求矩阵A的特

MATLAB中的diag函数

diag函数功能:矩阵对角元素的提取和创建对角阵 设以下X为方阵,v为向量 1、X = diag(v,k)当v是一个含有n个元素的向量时,返回一个n+abs(k)阶方阵X,向量v在矩阵X中的第k个对角线上,k=0表示主对角线,k>0表示在主对角线上方,k<0表示在主对角线下方。例1: v=[1 2 3]; diag(v, 3) ans =      0     0     0

Matlab simulink建模与仿真 第十章(模型扩展功能库)

参考视频:simulink1.1simulink简介_哔哩哔哩_bilibili 一、模型扩展功能库中的模块概览         注:下面不会对Block Support Table模块进行介绍。 二、基于触发的和基于时间的线性化模块 1、Trigger-Based Linearization基于触发的线性化模块 (1)每次当模块受到触发时,都会调用linmod或者dlinmod函数