7-10 功夫传人 (25分) 图 / 深度优先搜索

2023-12-04 17:48

本文主要是介绍7-10 功夫传人 (25分) 图 / 深度优先搜索,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

7-10 功夫传人 (25分)

一门武功能否传承久远并被发扬光大,是要看缘分的。一般来说,师傅传授给徒弟的武功总要打个折扣,于是越往后传,弟子们的功夫就越弱…… 直到某一支的某一代突然出现一个天分特别高的弟子(或者是吃到了灵丹、挖到了特别的秘笈),会将功夫的威力一下子放大N倍 —— 我们称这种弟子为“得道者”。

这里我们来考察某一位祖师爷门下的徒子徒孙家谱:假设家谱中的每个人只有1位师傅(除了祖师爷没有师傅);每位师傅可以带很多徒弟;并且假设辈分严格有序,即祖师爷这门武功的每个第i代传人只能在第i-1代传人中拜1个师傅。我们假设已知祖师爷的功力值为Z,每向下传承一代,就会减弱r%,除非某一代弟子得道。现给出师门谱系关系,要求你算出所有得道者的功力总值。

输入格式:

输入在第一行给出3个正整数,分别是:N(≤10​5
​​ )——整个师门的总人数(于是每个人从0到N−1编号,祖师爷的编号为0);Z——祖师爷的功力值(不一定是整数,但起码是正数);r ——每传一代功夫所打的折扣百分比值(不超过100的正数)。接下来有N行,第i行(i=0,⋯,N−1)描述编号为i的人所传的徒弟,格式为:
K
​i
​​ ID[1] ID[2] ⋯ ID[K
​i
​​ ]
其中K
​i
​​ 是徒弟的个数,后面跟的是各位徒弟的编号,数字间以空格间隔。K
​i
​​ 为零表示这是一位得道者,这时后面跟的一个数字表示其武功被放大的倍数。

输出格式:

在一行中输出所有得道者的功力总值,只保留其整数部分。题目保证输入和正确的输出都不超过1010​​ 。

输入样例:

10 18.0 1.00
3 2 3 5
1 9
1 4
1 7
0 7
2 6 1
1 8
0 9
0 4
0 3

输出样例:

404

分析

下面的内容直接摘得的 这篇博客里没有完成的代码,做了修改通过了这道题
【pta7-10 功夫传人 (25分)siackmc】

我明天看看到底是哪里问题

不是AC代码,会运行超时
// 功夫传人:这题考察的是如何计算得道者的武力值,也就是说判断得道者与祖师爷之间的关系。所以我定义了一个数组来表示关系

在这里插入图片描述

最后一个测试点超时的代码

#include<bits/stdc++.h>
using namespace std;
#define MAX 100000int peoples[MAX];
map<int,int> winners;double disciple(int id, double Z, double r){double sum = Z;double x = 1 - 0.01 * r;while(id != 0){id = peoples[id];sum = sum * x;
//		count++;}return sum;	
}
main(){int k, id, x, N;double r,Z, sum;cin >> N >> Z >> r;for(int i = 0; i < N; i++){cin >> k;for(int j = 0; j < k; j++){cin >> id;peoples[id] = i;}if(k == 0){cin >> x;winners[i] = x;}}map<int, int>::iterator iter;iter = winners.begin();sum = 0;while(iter != winners.end()) {
//        x = ;sum += disciple(iter->first, Z, r) * iter->second;iter++;}cout << int(sum);}

N/2单链表, 下端有N/2个叶子, 卡N^2算法 这个测试点会超时

分析上面超时的代码 可以发现 搜索 第几代 弟子的时候 使用的 递推

double disciple(int id, double Z, double r){double sum = Z;double x = 1 - 0.01 * r;while(id != 0){id = peoples[id];sum = sum * x;
//		count++;}return sum;	
}

当数据量特别大的 时候,每一个 得到的弟子 都要 从尾巴 遍历到 头部,时间复杂度 是 N*N 极易发生超时

我们计算 弟子的得到时的功力,只需要知道 当前的代数和 倍数,因为同一代的徒弟 师傅的值都是固定不变的,如果从第0 代开始依次 一代一代的向后遍历,查找的复杂度就是 1,就不会超时

修正后代码

我在原来的基础上 做了如下修改

  1. 删除了 递推函数
  2. 使用了 queue 分代存储
  3. 加入了N==1的快速判断
// 功夫传人:这题考察的是如何计算得道者的武力值,也就是说判断得道者与祖师爷之间的关系。所以我定义了一个数组来表示关系
#include<bits/stdc++.h>
using namespace std;
#define MAX 100000int winners[MAX];main(){vector<int>peoples[MAX];int k, id, x, N;double r,Z, sum=0.0;cin >> N >> Z >> r;for(int i = 0; i < N; i++){cin >> k;for(int j = 0; j < k; j++){cin >> id;peoples[i].push_back(id);}if(k == 0){cin >> x;winners[i] = x;}}if(N==1){cout << int(winners[0]*Z);return 0;}queue<int> q;q.push(0);int level=0;while(!q.empty())//bfs层次遍历{int t=q.size();level++;for(int i=0;i<t;i++){int top=q.front();q.pop();for(int j=0;j<peoples[top].size();j++){q.push(peoples[top][j]);double temp=Z*winners[peoples[top][j]]*pow(1-r*0.01,level);//cout<<temp<<endl;sum+=temp;}}}cout << int(sum);}

最后参考下 齐子佳 同学的代码 忍使用了递归,但是避免了重复的计算。值得学习和参考。

在这里插入图片描述

#include <iostream>
#include <vector>
#include <math.h>
using namespace std;vector<int>dai[100000];
int bei[100000];
double Z, r;double dfs(int x, int t)
{double s = 0;if (dai[x].size() == 0)s += bei[x] * Z * pow(1 - r / 100.0, t);elsefor (int i = 0; i < dai[x].size(); i++)s += dfs(dai[x][i],t + 1);return s;
}int main()
{int num1;int ren;cin >> num1 >> Z >> r;int num2;for (int i = 0; i < num1; i++){cin >> num2;if (num2 == 0) cin >> bei[i];else{for (int j = 0; j < num2; j++){cin >> ren;dai[i].push_back(ren);}}}cout << (long long)dfs(0, 0) << endl;
}

这篇关于7-10 功夫传人 (25分) 图 / 深度优先搜索的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/454360

相关文章

HTML5 搜索框Search Box详解

《HTML5搜索框SearchBox详解》HTML5的搜索框是一个强大的工具,能够有效提升用户体验,通过结合自动补全功能和适当的样式,可以创建出既美观又实用的搜索界面,这篇文章给大家介绍HTML5... html5 搜索框(Search Box)详解搜索框是一个用于输入查询内容的控件,通常用于网站或应用程

Python中文件读取操作漏洞深度解析与防护指南

《Python中文件读取操作漏洞深度解析与防护指南》在Web应用开发中,文件操作是最基础也最危险的功能之一,这篇文章将全面剖析Python环境中常见的文件读取漏洞类型,成因及防护方案,感兴趣的小伙伴可... 目录引言一、静态资源处理中的路径穿越漏洞1.1 典型漏洞场景1.2 os.path.join()的陷

Spring Boot拦截器Interceptor与过滤器Filter深度解析(区别、实现与实战指南)

《SpringBoot拦截器Interceptor与过滤器Filter深度解析(区别、实现与实战指南)》:本文主要介绍SpringBoot拦截器Interceptor与过滤器Filter深度解析... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现与实

MyBatis分页插件PageHelper深度解析与实践指南

《MyBatis分页插件PageHelper深度解析与实践指南》在数据库操作中,分页查询是最常见的需求之一,传统的分页方式通常有两种内存分页和SQL分页,MyBatis作为优秀的ORM框架,本身并未提... 目录1. 为什么需要分页插件?2. PageHelper简介3. PageHelper集成与配置3.

Maven 插件配置分层架构深度解析

《Maven插件配置分层架构深度解析》:本文主要介绍Maven插件配置分层架构深度解析,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录Maven 插件配置分层架构深度解析引言:当构建逻辑遇上复杂配置第一章 Maven插件配置的三重境界1.1 插件配置的拓扑

Python中__init__方法使用的深度解析

《Python中__init__方法使用的深度解析》在Python的面向对象编程(OOP)体系中,__init__方法如同建造房屋时的奠基仪式——它定义了对象诞生时的初始状态,下面我们就来深入了解下_... 目录一、__init__的基因图谱二、初始化过程的魔法时刻继承链中的初始化顺序self参数的奥秘默认

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Redis中高并发读写性能的深度解析与优化

《Redis中高并发读写性能的深度解析与优化》Redis作为一款高性能的内存数据库,广泛应用于缓存、消息队列、实时统计等场景,本文将深入探讨Redis的读写并发能力,感兴趣的小伙伴可以了解下... 目录引言一、Redis 并发能力概述1.1 Redis 的读写性能1.2 影响 Redis 并发能力的因素二、

最新Spring Security实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)

《最新SpringSecurity实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)》本章节介绍了如何通过SpringSecurity实现从配置自定义登录页面、表单登录处理逻辑的配置,并简单模拟... 目录前言改造准备开始登录页改造自定义用户名密码登陆成功失败跳转问题自定义登出前后端分离适配方案结语前言