双自由度振动系统/车辆悬架的受力分析及建模——以1/4车辆悬架为例

2023-12-04 16:10

本文主要是介绍双自由度振动系统/车辆悬架的受力分析及建模——以1/4车辆悬架为例,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

引入

        在做悬架垂向运动控制或动态力学计算时,双质量振动系统微分方程是所有工作的基础,常见如下形式:(注意z,z_{t},z_{r}分别是簧上质量、簧下质量、路面的垂向位移变化)

        这里给出两种动力学方程:

(1)                                \left.\left\{\begin{array}{l}M\ddot{z}=k\left(z_t-z\right)+c\left(\dot{z}_t-\dot{z}\right)\\m\ddot{z}_t=k_t\left(z_r-z_t\right)-k\left(z_t-z\right)-c\left(\dot{z}_t-\dot{z}\right)\end{array}\right.\right.

(2)                                \begin{cases}M\ddot{z}=-k(z-z_{t})-c(\dot{z}-\dot{z}_{t})\\m\ddot{z}_{t}=k(z-z_{t})+c(\dot{z}-\dot{z}_{t})-k_{t}(z_{t}-z_{r})\end{cases}

        仔细观察,这两个方程组是完全一样的。在研读论文时,可能会发现一个令人懊恼的问题:不同的论文有不同的写法,在我们试着读懂这些论文时,浪费了大量的时间在推导这一个小小的公式上,其实只是不同作者的思路不同罢了。在双自由度振动系统问题上,大致分为两类,而最后得出的动力学方程也不外乎以上“两种”形式。

        下面分别给出这两种形式的推导过程。

(1)正常思维

        首先假设 zr > zt > z , 也就是假设  路面位移  >  簧下质量位移  >  簧上质量位移 。(其实这个假设没有必要,因为这是事实。因为路面振动引起了簧下质量振动,又因为簧下质量振动引起了簧上质量振动,振动系统的目的就是要减震,上边的位移比下边小也很好理解。)

        基于此,我们可以进行受力分析,然后利用牛顿定律得出方程。

        受力分析:
                                                                        

        其中,惯性力M\ddot{z}m\ddot{z}的方向非常重要,记住:惯性力方向与加速度方向相反

        对于M,因为簧下质量位移  >  簧上质量位移,弹簧和阻尼都被压缩,所以k弹簧和阻尼力都向上;又因为在这种假设情况下,是簧下质量位移引起的簧上质量位移,故M具有向上运动趋势,惯性力M\ddot{z}向下。

        对于m,因为路面位移  >  簧下质量位移  >  簧上质量位移,  所以k_{t}弹簧力向上, k弹簧和阻尼力方向与M所受这两个力方向相反,所以向下;又因为在这种假设情况下,是路面位移引起的簧下质量位移,故m有向上加速趋势,所以这里加速度方向向上,惯性力m\ddot{z}方向向下。

        根据受力分析结果以及牛顿定律不难得出(1)式。

(2)逆向思维

不同的人考虑问题从不同角度出发,对于(2)式的推导,可以这样理解:

        假设M之上存在一个 弹簧 k_{0} 或者 阻尼 c_{0} (无关紧要)连接着M与天空,这同样是著名的天钩控制(sky-hook)理论的理想状态。模型如下:

        这里我们假设天空也存在一个位移 z_{0} ,并且假设 天空位移 > 簧上质量位移 > 簧下质量位移 > 路面位移。基于此,

受力分析:

                                           

相信通过对(1)式的理解学习,第(2)种情况的受力分析就不难理解了。

        对于M,因为 簧上质量位移  >  簧下质量位移,弹簧 k 和阻尼都被拉伸,所以k弹簧和阻尼力都向下,弹簧 k_{0} 被拉伸, k_{0} 弹簧力向上;又因为这种假设情况下,是簧上质量位移引起的簧下质量位移,故M具有向上运动趋势,惯性力M\ddot{z}向下。

        对于m,因为簧上质量位移  >  簧下质量位移  >  路面位移, k_{t} 弹簧被拉伸,所以 k_{t} 弹簧力向下,k弹簧和阻尼力方向与 M所受这两个力 方向相反,所以向上;又因为在这种假设情况下,是簧下质量位移引起的路面位移,故m有向上加速趋势,所以这里加速度方向向上,惯性力m\ddot{z}方向向下。

可以得到以下方程:

  (3)              ​​​​​​​                \begin{cases}M\ddot{z}=k_{0}(z_{0}-z)-k(z-z_{t})-c(\dot{z}-\dot{z}_{t})\\m\ddot{z}_{t}=k(z-z_{t})+c(\dot{z}-\dot{z}_{t})-k_{t}(z_{t}-z_{r})\end{cases}

        这里多了 k_{0} ,因为实际上不存在这样一个弹簧连接天空和M,所以可以令 k_{0} =0,消去这一项,从而得到(2)式。


        可以发现,两种情况下,M和m的惯性力方向都是向下的,因为无论是收到推力还是拉力,合力方向向上,加速度方向向上,惯性力方向也就向下了。

        无论是  认为 地面位移引起振动 还是 认为M位移引起振动,最后得到的微分方程是一样的,或许放这样两张图更容易理解:

(1)路面位移引起
(2)M位移引起

    

  总之,不论在哪种情况下,最后得出的方程肯定是一样的,码字不易,你懂的。

这篇关于双自由度振动系统/车辆悬架的受力分析及建模——以1/4车辆悬架为例的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:https://blog.csdn.net/meishuren/article/details/133516491
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/454071

相关文章

基于Go语言实现Base62编码的三种方式以及对比分析

《基于Go语言实现Base62编码的三种方式以及对比分析》Base62编码是一种在字符编码中使用62个字符的编码方式,在计算机科学中,,Go语言是一种静态类型、编译型语言,它由Google开发并开源,... 目录一、标准库现状与解决方案1. 标准库对比表2. 解决方案完整实现代码(含边界处理)二、关键实现细

ubuntu20.0.4系统中安装Anaconda的超详细图文教程

《ubuntu20.0.4系统中安装Anaconda的超详细图文教程》:本文主要介绍了在Ubuntu系统中如何下载和安装Anaconda,提供了两种方法,详细内容请阅读本文,希望能对你有所帮助... 本文介绍了在Ubuntu系统中如何下载和安装Anaconda。提供了两种方法,包括通过网页手动下载和使用wg

ubuntu系统使用官方操作命令升级Dify指南

《ubuntu系统使用官方操作命令升级Dify指南》Dify支持自动化执行、日志记录和结果管理,适用于数据处理、模型训练和部署等场景,今天我们就来看看ubuntu系统中使用官方操作命令升级Dify的方... Dify 是一个基于 docker 的工作流管理工具,旨在简化机器学习和数据科学领域的多步骤工作流。

PostgreSQL 序列(Sequence) 与 Oracle 序列对比差异分析

《PostgreSQL序列(Sequence)与Oracle序列对比差异分析》PostgreSQL和Oracle都提供了序列(Sequence)功能,但在实现细节和使用方式上存在一些重要差异,... 目录PostgreSQL 序列(Sequence) 与 oracle 序列对比一 基本语法对比1.1 创建序

使用Python和SQLAlchemy实现高效的邮件发送系统

《使用Python和SQLAlchemy实现高效的邮件发送系统》在现代Web应用中,邮件通知是不可或缺的功能之一,无论是订单确认、文件处理结果通知,还是系统告警,邮件都是最常用的通信方式之一,本文将详... 目录引言1. 需求分析2. 数据库设计2.1 User 表(存储用户信息)2.2 CustomerO

Linux系统调试之ltrace工具使用与调试过程

《Linux系统调试之ltrace工具使用与调试过程》:本文主要介绍Linux系统调试之ltrace工具使用与调试过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录一、ltrace 定义与作用二、ltrace 工作原理1. 劫持进程的 PLT/GOT 表2. 重定

Springboot实现推荐系统的协同过滤算法

《Springboot实现推荐系统的协同过滤算法》协同过滤算法是一种在推荐系统中广泛使用的算法,用于预测用户对物品(如商品、电影、音乐等)的偏好,从而实现个性化推荐,下面给大家介绍Springboot... 目录前言基本原理 算法分类 计算方法应用场景 代码实现 前言协同过滤算法(Collaborativ

慢sql提前分析预警和动态sql替换-Mybatis-SQL

《慢sql提前分析预警和动态sql替换-Mybatis-SQL》为防止慢SQL问题而开发的MyBatis组件,该组件能够在开发、测试阶段自动分析SQL语句,并在出现慢SQL问题时通过Ducc配置实现动... 目录背景解决思路开源方案调研设计方案详细设计使用方法1、引入依赖jar包2、配置组件XML3、核心配

Java NoClassDefFoundError运行时错误分析解决

《JavaNoClassDefFoundError运行时错误分析解决》在Java开发中,NoClassDefFoundError是一种常见的运行时错误,它通常表明Java虚拟机在尝试加载一个类时未能... 目录前言一、问题分析二、报错原因三、解决思路检查类路径配置检查依赖库检查类文件调试类加载器问题四、常见

Windows系统宽带限制如何解除?

《Windows系统宽带限制如何解除?》有不少用户反映电脑网速慢得情况,可能是宽带速度被限制的原因,只需解除限制即可,具体该如何操作呢?本文就跟大家一起来看看Windows系统解除网络限制的操作方法吧... 有不少用户反映电脑网速慢得情况,可能是宽带速度被限制的原因,只需解除限制即可,具体该如何操作呢?本文