文章解读与仿真程序复现思路——中国电机工程学报EI\CSCD\北大核心《考虑量化储热的多区域电–热综合能源系统优化调度》

本文主要是介绍文章解读与仿真程序复现思路——中国电机工程学报EI\CSCD\北大核心《考虑量化储热的多区域电–热综合能源系统优化调度》,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

标题 "考虑量化储热的多区域电–热综合能源系统优化调度" 可以分解为几个关键词和短语,我们逐步解读:

  1. 考虑量化储热:

    • 考虑: 意味着在解决问题或进行研究时,会综合或纳入特定因素。
    • 量化: 将抽象的概念或参数用具体的数值表示,即进行定量分析。
    • 储热: 储存热能,可能涉及热能的采集、存储和释放等方面。
  2. 多区域:

    • 涉及多个地理或功能区域,这可能指涉及多个城市、地区、或者系统中的多个子系统。
  3. 电–热综合能源系统:

    • 电: 涉及电能,可能包括发电、输电等。
    • 热: 涉及热能,可能包括热能的生产、输送等。
    • 综合能源系统: 将不同形式的能源集成在一起的系统,这里指的是电能和热能。
  4. 优化调度:

    • 优化: 在给定的条件下,寻找最优解决方案的过程,可能涉及最大化效益、最小化成本等。
    • 调度: 对资源或任务进行合理的分配和安排。

因此,整体来说,这个标题可能指的是一个研究方向或项目,旨在通过考虑热能的量化储存,针对涉及多个地理或功能区域的电–热综合能源系统进行优化调度。这涉及到电和热能的综合利用,以及如何在多区域环境下最有效地分配和利用这些能源。

摘要:多区域电–热综合能源系统(integratedpowerand heatingsystem,IPHS)是包含多个独立供热系统的跨区域电热耦合系统,其供热管网储热能力具有巨大调控潜力。但目前IPHS调度未考虑储热量化和储热主动调控,造成管网热损增加、管道加速老化等诸多问题,严重影响管网储热潜力的灵活利用。因此,该文提出一种考虑量化储热的多区域IPHS优化调度方法。首先,考虑供热管网储热特性和多区域调度的计算效率需求,基于一阶隐式迎风差分改进并简化供热管网模型,建立供热管网的虚拟蓄热罐模型;在此基础上,提出供热系统热储能状态指标(state of thermal storage,SOTS),用于一次管网储热量化,并建立管网储热的量化调控指标;最后,结合1–bin机组组合模型构建多区域IPHS优化调度模型,将管网储热调控目标加入IPHS优化调度目标,并利用混合整数二次规划求解器求解,得到IPHS优化调度方案。算例分析验证了该方法在提升IPHS机组经济性、促进风电消纳、降低热损量等方面的有效性。

这段摘要讨论了针对多区域电–热综合能源系统(IPHS)的优化调度方法,旨在解决目前IPHS调度中未考虑储热量化和主动储热调控所导致的问题。

  1. 系统描述:

    • IPHS 是一个包含多个独立供热系统的电热耦合系统,其供热管网储热能力有潜力进行调节。
    • 问题存在: 目前IPHS调度未考虑储热量化和主动储热调控,导致管网热损增加、管道老化加速等问题,限制了管网储热潜力的有效利用。
  2. 提出方法:

    • 建模改进: 基于一阶隐式迎风差分方法对供热管网模型进行改进和简化,建立了供热管网的虚拟蓄热罐模型,以考虑供热管网的储热特性和多区域调度的计算效率需求。
    • 引入指标: 提出了供热系统热储能状态指标 (SOTS),用于量化管网的储热情况,并建立了管网储热的量化调控指标。
    • 优化模型: 结合了1–bin机组组合模型,构建了多区域IPHS优化调度模型,并将管网储热调控目标整合到IPHS优化调度目标中。最后,利用混合整数二次规划求解器来得到IPHS优化调度方案。
  3. 算例验证:

    • 有效性验证: 通过算例分析证明了这种方法在提升IPHS机组经济性、促进风电消纳以及降低热损量等方面的有效性。

综合来看,这项研究通过引入量化储热和储热主动调控的方法,提出了一种综合考虑供热管网特性和多区域调度需求的优化方案,旨在解决IPHS调度中存在的问题,并证明了该方案的有效性。

关键词:电_热综合能源系统;多区域系统;量化储热;优化调度;

这些关键词涉及能源系统管理和优化的关键概念:

  1. 电-热综合能源系统: 这指的是一种综合利用电力和热能的系统,旨在实现能源的高效利用和互联互通。这种系统可能整合电力和热能生产、传输、储存和使用,通过有效管理和协调这两种能源形式来提高能源利用效率。

  2. 多区域系统: 指的是跨越多个区域或地域范围的系统,这些区域可能在能源生产、需求或供应方面存在差异。在能源管理中,多区域系统需要考虑不同地区的能源特性、需求和传输,以便进行更有效的能源分配和利用。

  3. 量化储热: 意味着对热能储存量进行量化分析和管理。这可能涉及衡量热能的储存容量、储存效率以及在系统中存储和释放热能的方法。通过量化储热,可以更有效地利用可再生能源或尖峰时段产生的能源,并在需要时释放。

  4. 优化调度: 指通过算法、模型或技术对系统进行智能调度和管理,以最大程度地提高系统效率、降低成本、满足能源需求,并考虑到各种约束条件。在能源系统中,优化调度可以指调整能源生产、传输和消费的时间、量和方式,以达到系统运行的最佳状态。

综合来看,这些关键词涉及到整合不同形式能源、管理跨区域系统、量化能源储存以及通过优化调度来提高能源系统效率的重要概念。在电力和热能管理中,这些概念都是为了更有效地利用资源、降低能源成本、减少环境影响并确保能源供应的可靠性。

仿真算例:

本文选取 IEEE-118 节点电力系统算例,系统 中29个节点为传统火电机组,6个节点为风电机组, 19 个节点为 CHP 机组,CHP 机组装机容量在火电 机组中占比 41.6%,风电机组在发电机组中占比为 19%,如图 4 所示。每个 CHP 机组对应一个区域供 热系统,分别选取 6 节点、28 节点以及 44 节点供 热系统算例[7]进行复用,并设置管网水温上下限, 供水管网温度上下限 Ts,max/T s,min 为 110℃/80℃,回 水管网温度上下限 T r,max/T r,min 为 70℃/40℃。供热 系统参数如附录 A 表 A1 所示。所有供热系统在 0 时的 SOTS 设为 50%, min OTSk S 均为 0%, max OTSk S 均为 100%, max OTSk S 均设为 50%。IPHS 的电、热负荷以及风电预测出力如附录 A 图 A1 所示,调度周期 24h,调度时间分辨率为 1h。为验证本文调度方法 的有效性,算例设置 3 个场景: 1)场景 I: 采用以热定电运行模式,调度模型为(32),并 将其中约束(4)—(7),(13),(14)替换为式(30); 2)场景Ⅱ: 采用本文调度方法,调度模型为(32),仅考虑 热电解耦,不考虑供热管网储热量的协同调控,忽略协同调控惩罚项的影响,罚因子设为 0; 3)场景Ⅲ: 采用本文调度方法,调度模型为(32),考虑供 热管网储热量的协同调控,将罚因子设为 103 ;

仿真程序复现思路:

复现这个仿真涉及以下步骤:

  1. 建模:

    • 使用电力系统仿真工具,如MATLAB/Simulink或PowerWorld等,构建 IEEE-118 节点电力系统模型。定义每个节点的特性,包括传统火电机组、风电机组和CHP机组等。
  2. 区域供热系统建模:

    • 为每个CHP机组创建相应的区域供热系统模型。选择并复用6、28和44节点的供热系统算例,并设置管网水温上下限、供水和回水管网温度上下限。
  3. IPHS负荷和风电预测建模:

    • 根据文中提到的IPHS的电、热负荷以及风电预测出力,使用合适的数学模型进行建模。这可能涉及创建时间序列模型或使用已知数据进行插值。
  4. 调度模型设置:

    • 为每个场景设置调度模型。在场景 I 中,采用以热定电运行模式,替换特定约束为新的式(30)。在场景Ⅱ中,考虑热电解耦,但不考虑供热管网储热量的协同调控。在场景Ⅲ中,考虑供热管网储热量的协同调控,并设置罚因子。
  5. 调度周期和分辨率设置:

    • 设置调度周期为24小时,调度时间分辨率为1小时,以匹配仿真的时间尺度。
  6. 运行仿真:

    • 编写仿真脚本,将上述模型和参数传入仿真工具。运行三个场景的仿真,并记录相关输出数据。
  7. 结果分析:

    • 分析仿真结果,比较场景 I、Ⅱ 和Ⅲ 的性能。这可能涉及评估电力系统的稳定性、经济性和环境影响等方面的指标。

以下是一个简化的仿真思路的伪代码表示(使用Python作为伪代码的编程语言表示):

import pandas as pd
import numpy as np
from scipy.optimize import minimize# 步骤1:建模
def build_power_system_model():# 实现电力系统的建模passdef build_heating_systems():# 实现供热系统的建模pass# 步骤2:区域供热系统建模
def build_heating_system_model(chp_unit):# 实现单个供热系统的建模pass# 步骤3:IPHS负荷和风电预测建模
def build_iphs_load_model():# 实现IPHS负荷建模passdef build_wind_power_forecast():# 实现风电预测建模pass# 步骤4:调度模型设置
def set_dispatch_model(scenario, heat_decoupling=False, penalty_factor=0):# 实现调度模型设置,可能使用数学规划库如scipy.optimizepass# 步骤6:运行仿真
def run_simulation(dispatch_model, dispatch_cycle, time_resolution):# 实现仿真运行,可能调用优化算法进行求解pass# 步骤7:结果分析
def analyze_results(results_scenario_I, results_scenario_II, results_scenario_III):# 实现仿真结果的分析pass# 主程序
if __name__ == "__main__":# 步骤1:建模power_system = build_power_system_model()heating_systems = build_heating_systems()# 步骤2:区域供热系统建模for chp_unit in heating_systems:build_heating_system_model(chp_unit)# 步骤3:IPHS负荷和风电预测建模iphs_load = build_iphs_load_model()wind_power_forecast = build_wind_power_forecast()# 步骤4:调度模型设置scenario_I_model = set_dispatch_model("Scenario I", constraints_replace=True)scenario_II_model = set_dispatch_model("Scenario II", heat_decoupling=True, penalty_factor=0)scenario_III_model = set_dispatch_model("Scenario III", heat_decoupling=True, penalty_factor=1e3)# 步骤5:调度周期和分辨率设置dispatch_cycle = 24  # hourstime_resolution = 1  # hour# 步骤6:运行仿真results_scenario_I = run_simulation(scenario_I_model, dispatch_cycle, time_resolution)results_scenario_II = run_simulation(scenario_II_model, dispatch_cycle, time_resolution)results_scenario_III = run_simulation(scenario_III_model, dispatch_cycle, time_resolution)# 步骤7:结果分析analyze_results(results_scenario_I, results_scenario_II, results_scenario_III)

请注意,这只是一个简化的示例,并没有具体的优化算法或电力系统建模的详细内容。实际的仿真程序可能需要更多的细节和精确性,并可能使用专业的仿真工具和优化库。

这篇关于文章解读与仿真程序复现思路——中国电机工程学报EI\CSCD\北大核心《考虑量化储热的多区域电–热综合能源系统优化调度》的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/453087

相关文章

Java内存区域与内存溢出异常的详细探讨

《Java内存区域与内存溢出异常的详细探讨》:本文主要介绍Java内存区域与内存溢出异常的相关资料,分析异常原因并提供解决策略,如参数调整、代码优化等,帮助开发者排查内存问题,需要的朋友可以参考下... 目录一、引言二、Java 运行时数据区域(一)程序计数器(二)Java 虚拟机栈(三)本地方法栈(四)J

SpringBoot后端实现小程序微信登录功能实现

《SpringBoot后端实现小程序微信登录功能实现》微信小程序登录是开发者通过微信提供的身份验证机制,获取用户唯一标识(openid)和会话密钥(session_key)的过程,这篇文章给大家介绍S... 目录SpringBoot实现微信小程序登录简介SpringBoot后端实现微信登录SpringBoo

Java中的StringUtils.isBlank()方法解读

《Java中的StringUtils.isBlank()方法解读》:本文主要介绍Java中的StringUtils.isBlank()方法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录所在库及依赖引入方法签名方法功能示例代码代码解释与其他方法的对比总结StringUtils.isBl

uniapp小程序中实现无缝衔接滚动效果代码示例

《uniapp小程序中实现无缝衔接滚动效果代码示例》:本文主要介绍uniapp小程序中实现无缝衔接滚动效果的相关资料,该方法可以实现滚动内容中字的不同的颜色更改,并且可以根据需要进行艺术化更改和自... 组件滚动通知只能实现简单的滚动效果,不能实现滚动内容中的字进行不同颜色的更改,下面实现一个无缝衔接的滚动

对Django中时区的解读

《对Django中时区的解读》:本文主要介绍对Django中时区的解读方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录背景前端数据库中存储接口返回AI的解释问题:这样设置的作用答案获取当前时间(自动带时区)转换为北京时间显示总结背景设置时区为北京时间 TIM

Java中的内部类和常用类用法解读

《Java中的内部类和常用类用法解读》:本文主要介绍Java中的内部类和常用类用法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录内部类和常用类内部类成员内部类静态内部类局部内部类匿名内部类常用类Object类包装类String类StringBuffer和Stri

Python MCPInspector调试思路详解

《PythonMCPInspector调试思路详解》:本文主要介绍PythonMCPInspector调试思路详解,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋... 目录python-MCPInspector调试1-核心知识点2-思路整理1-核心思路2-核心代码3-参考网址

Java使用WebView实现桌面程序的技术指南

《Java使用WebView实现桌面程序的技术指南》在现代软件开发中,许多应用需要在桌面程序中嵌入Web页面,例如,你可能需要在Java桌面应用中嵌入一部分Web前端,或者加载一个HTML5界面以增强... 目录1、简述2、WebView 特点3、搭建 WebView 示例3.1 添加 JavaFX 依赖3

防止SpringBoot程序崩溃的几种方式汇总

《防止SpringBoot程序崩溃的几种方式汇总》本文总结了8种防止SpringBoot程序崩溃的方法,包括全局异常处理、try-catch、断路器、资源限制、监控、优雅停机、健康检查和数据库连接池配... 目录1. 全局异常处理2. 使用 try-catch 捕获异常3. 使用断路器4. 设置最大内存和线

Java Jackson核心注解使用详解

《JavaJackson核心注解使用详解》:本文主要介绍JavaJackson核心注解的使用,​​Jackson核心注解​​用于控制Java对象与JSON之间的序列化、反序列化行为,简化字段映射... 目录前言一、@jsonProperty-指定JSON字段名二、@JsonIgnore-忽略字段三、@Jso