Redis quicklist源码+listpack源码(5.0版本以上的优化)

2023-12-04 07:36

本文主要是介绍Redis quicklist源码+listpack源码(5.0版本以上的优化),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

ziplist设计上的问题,每一次增删改都需要计算前面元素的空间和长度(prevlen),这种设计缺陷非常明显,因此引入了quicklist的设计。

quicklist

quicklist实际就是双端链表,链表里的每一个节点都是ziplist,这样就可以避免减少了数据插入时内存空间的重新分配,以及内存数据的拷贝。同时每一个节点都会限制ziplist的大小,如果ziplist里面插入的entry过多,就会转化为quicklist增加node方式来存储。

基础结构(其实就是双向链表增删改查结构,没有太吸引人的地方)

typedef struct quicklistNode {struct quicklistNode *prev;struct quicklistNode *next;unsigned char *zl;unsigned int sz;             /* ziplist size in bytes */unsigned int count : 16;     /* count of items in ziplist */unsigned int encoding : 2;   /* RAW==1 or LZF==2 */unsigned int container : 2;  /* NONE==1 or ZIPLIST==2 */unsigned int recompress : 1; /* was this node previous compressed? */unsigned int attempted_compress : 1; /* node can't compress; too small */unsigned int extra : 10; /* more bits to steal for future usage */
} quicklistNode;/* quicklistLZF is a 4+N byte struct holding 'sz' followed by 'compressed'.* 'sz' is byte length of 'compressed' field.* 'compressed' is LZF data with total (compressed) length 'sz'* NOTE: uncompressed length is stored in quicklistNode->sz.* When quicklistNode->zl is compressed, node->zl points to a quicklistLZF */
typedef struct quicklistLZF {unsigned int sz; /* LZF size in bytes*/char compressed[];
} quicklistLZF;/* quicklist is a 40 byte struct (on 64-bit systems) describing a quicklist.* 'count' is the number of total entries.* 'len' is the number of quicklist nodes.* 'compress' is: -1 if compression disabled, otherwise it's the number*                of quicklistNodes to leave uncompressed at ends of quicklist.* 'fill' is the user-requested (or default) fill factor. */
typedef struct quicklist {quicklistNode *head;quicklistNode *tail;unsigned long count;        /* total count of all entries in all ziplists */unsigned long len;          /* number of quicklistNodes */int fill : 16;              /* fill factor for individual nodes */unsigned int compress : 16; /* depth of end nodes not to compress;0=off */
} quicklist;/* Create a new quicklist with some default parameters. */
quicklist *quicklistNew(int fill, int compress) {quicklist *quicklist = quicklistCreate();quicklistSetOptions(quicklist, fill, compress);return quicklist;
}/* Add new entry to tail node of quicklist.*追加元素* Returns 0 if used existing tail.* Returns 1 if new tail created. */
int quicklistPushTail(quicklist *quicklist, void *value, size_t sz) {quicklistNode *orig_tail = quicklist->tail;assert(sz < UINT32_MAX); /* TODO: add support for quicklist nodes that are sds encoded (not zipped) */if (likely(_quicklistNodeAllowInsert(quicklist->tail, quicklist->fill, sz))) {quicklist->tail->zl =ziplistPush(quicklist->tail->zl, value, sz, ZIPLIST_TAIL);quicklistNodeUpdateSz(quicklist->tail);} else {quicklistNode *node = quicklistCreateNode();node->zl = ziplistPush(ziplistNew(), value, sz, ZIPLIST_TAIL);quicklistNodeUpdateSz(node);_quicklistInsertNodeAfter(quicklist, quicklist->tail, node);}quicklist->count++;quicklist->tail->count++;return (orig_tail != quicklist->tail);
}/* Delete one element represented by 'entry'*删除元素* 'entry' stores enough metadata to delete the proper position in* the correct ziplist in the correct quicklist node. */
void quicklistDelEntry(quicklistIter *iter, quicklistEntry *entry) {quicklistNode *prev = entry->node->prev;quicklistNode *next = entry->node->next;int deleted_node = quicklistDelIndex((quicklist *)entry->quicklist,entry->node, &entry->zi);/* after delete, the zi is now invalid for any future usage. */iter->zi = NULL;/* If current node is deleted, we must update iterator node and offset. */if (deleted_node) {if (iter->direction == AL_START_HEAD) {iter->current = next;iter->offset = 0;} else if (iter->direction == AL_START_TAIL) {iter->current = prev;iter->offset = -1;}}/* else if (!deleted_node), no changes needed.* we already reset iter->zi above, and the existing iter->offset* doesn't move again because:*   - [1, 2, 3] => delete offset 1 => [1, 3]: next element still offset 1*   - [1, 2, 3] => delete offset 0 => [2, 3]: next element still offset 0*  if we deleted the last element at offet N and now*  length of this ziplist is N-1, the next call into*  quicklistNext() will jump to the next node. */
}

 listpack

quicklist链表里的每一个node都会指向ziplist,内存占用极大。

listpack沿用ziplist的基础数据结构,采用的连续内存布局,不会去计算前一项的空间长度,只会计算自己的长度,这样可以完全避免连续更新的缺陷,并且做了双向索引的优化。

 

编码方式:

整型编码

字符串编码

遍历方式:

正向遍历:lpFirst-->lpNext-->lpSkip  调用两个函数lpCurrentEncodedSize 和 lpEncodeBacklen

        lpCurrentEncodedSize 函数是根据当前列表项第 1 个字节的取值,来计算当前项的编码类型,并根据编码类型,计算当前项编码类型和实际数据的总长度。然后,lpEncodeBacklen 函数会根据编码类型和实际数据的长度之和,进一步计算列表项最后一部分 entry-len 本身的长度。这样一来,lpSkip 函数就知道当前项的编码类型、实际数据和 entry-len 的总长度了,也就可以将当前项指针向右偏移相应的长度,从而实现查到下一个列表项的目的。

反向遍历

这篇关于Redis quicklist源码+listpack源码(5.0版本以上的优化)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/452653

相关文章

Redis 的 SUBSCRIBE命令详解

《Redis的SUBSCRIBE命令详解》Redis的SUBSCRIBE命令用于订阅一个或多个频道,以便接收发送到这些频道的消息,本文给大家介绍Redis的SUBSCRIBE命令,感兴趣的朋友跟随... 目录基本语法工作原理示例消息格式相关命令python 示例Redis 的 SUBSCRIBE 命令用于订

sky-take-out项目中Redis的使用示例详解

《sky-take-out项目中Redis的使用示例详解》SpringCache是Spring的缓存抽象层,通过注解简化缓存管理,支持Redis等提供者,适用于方法结果缓存、更新和删除操作,但无法实现... 目录Spring Cache主要特性核心注解1.@Cacheable2.@CachePut3.@Ca

Redis实现高效内存管理的示例代码

《Redis实现高效内存管理的示例代码》Redis内存管理是其核心功能之一,为了高效地利用内存,Redis采用了多种技术和策略,如优化的数据结构、内存分配策略、内存回收、数据压缩等,下面就来详细的介绍... 目录1. 内存分配策略jemalloc 的使用2. 数据压缩和编码ziplist示例代码3. 优化的

redis-sentinel基础概念及部署流程

《redis-sentinel基础概念及部署流程》RedisSentinel是Redis的高可用解决方案,通过监控主从节点、自动故障转移、通知机制及配置提供,实现集群故障恢复与服务持续可用,核心组件包... 目录一. 引言二. 核心功能三. 核心组件四. 故障转移流程五. 服务部署六. sentinel部署

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱

Ubuntu如何升级Python版本

《Ubuntu如何升级Python版本》Ubuntu22.04Docker中,安装Python3.11后,使用update-alternatives设置为默认版本,最后用python3-V验证... 目China编程录问题描述前提环境解决方法总结问题描述Ubuntu22.04系统自带python3.10,想升级

Python实战之SEO优化自动化工具开发指南

《Python实战之SEO优化自动化工具开发指南》在数字化营销时代,搜索引擎优化(SEO)已成为网站获取流量的重要手段,本文将带您使用Python开发一套完整的SEO自动化工具,需要的可以了解下... 目录前言项目概述技术栈选择核心模块实现1. 关键词研究模块2. 网站技术seo检测模块3. 内容优化分析模

Java实现复杂查询优化的7个技巧小结

《Java实现复杂查询优化的7个技巧小结》在Java项目中,复杂查询是开发者面临的“硬骨头”,本文将通过7个实战技巧,结合代码示例和性能对比,手把手教你如何让复杂查询变得优雅,大家可以根据需求进行选择... 目录一、复杂查询的痛点:为何你的代码“又臭又长”1.1冗余变量与中间状态1.2重复查询与性能陷阱1.

Python内存优化的实战技巧分享

《Python内存优化的实战技巧分享》Python作为一门解释型语言,虽然在开发效率上有着显著优势,但在执行效率方面往往被诟病,然而,通过合理的内存优化策略,我们可以让Python程序的运行速度提升3... 目录前言python内存管理机制引用计数机制垃圾回收机制内存泄漏的常见原因1. 循环引用2. 全局变

基于Redis自动过期的流处理暂停机制

《基于Redis自动过期的流处理暂停机制》基于Redis自动过期的流处理暂停机制是一种高效、可靠且易于实现的解决方案,防止延时过大的数据影响实时处理自动恢复处理,以避免积压的数据影响实时性,下面就来详... 目录核心思路代码实现1. 初始化Redis连接和键前缀2. 接收数据时检查暂停状态3. 检测到延时过