【FPGA】Verilog:二进制并行加法器 | 超前进位 | 实现 4 位二进制并行加法器和减法器 | MSI/LSI 运算电路

本文主要是介绍【FPGA】Verilog:二进制并行加法器 | 超前进位 | 实现 4 位二进制并行加法器和减法器 | MSI/LSI 运算电路,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!


Ⅰ. 前置知识

0x00 并行加法器和减法器

如果我们要对 4 位加法器和减法器进行关于二进制并行运算功能,可以通过将加法器和减法器以 N 个并行连接的方式,创建一个执行 N 位加法和减法运算的电路。

4 位二进制并行加法器

4 位二进制并行减法器

换句话说,4 位二进制并行加法器可以执行两个 4 位二进制数之间的加法运算,而 4 位二进制并行减法器可以执行两个 4 位二进制数之间的减法运算。如上图所示,4 位二进制并行加法器由四个并联的 1 位全加法器组成,而 4 位二进制并行减法器由四个并联的 1 位全减法器组成。

计算方法如下:

被加数和加数的各位能同时并行到达各位的输入端,而各位全加器的进位输入则是按照由低位向高位逐级串行传递的,各进位形成一个进位链。由于每一位相加的和都与本位进位输入有关,所以,最高位必须等到各低位全部相加完成并送来进位信号之后才能产生运算结果。显然,这种加法器运算速度较慢,而且位数越多,速度就越低。为了提高加法器的运算速度,必须设法减小或去除由于进位信号逐级传送所花的时间,使各位的进位直接由加数和被加数来决定,而不需依赖低位进位。根据这一思想设计的加法器称为超前进位(又称先行进位)二进制并行加法器。

0x01 超前进位(Look ahead carry)

超前进位是一种用于减少纹波进位链电路运算延迟的运算方法。在多位的加法运算中,原本是将进位转移到下一位的加法运算中,并按顺序进行计算,但通过求解所有位的进位表达式并进行计算,就可以一次性计算出每一位的进位,而无需转移前一位的进位,从而减少了门通过的延迟。下图显示了使用超前进位法计算 4 位加法运算的进位。

Look Ahead Carry (4bit Adder)

4bit Look-ahead Adder

Ⅱ. 实现 4 位二进制并行加法器

0x00 实现要求

解释 4 位二进制并行加法器的结果和仿真过程

0x01 代码和仿真代码

💬 Design source:

`timescale 1ns / 1psmodule BPA(input Cin,input A0,input A1,input A2,input A3,input B0,input B1,input B2,input B3,output C1,output C2,output C3,output C4,output S0,output S1,output S2,output S3);assign S0 = (A0^B0)^Cin;
assign C1 = (Cin&(A0^B0)) | (A0&B0);assign S1 = (A1^B1)^C1;
assign C2 = (C1&(A1^B1)) | (A1&B1);assign S2 = (A2^B2)^C2;
assign C3 = (C2&(A2^B2)) | (A2&B2);assign S3 = (A3^B3)^C3;
assign C4 = (C3&(A3^B3)) | (A3&B3);endmodule

💬 Testbench:

`timescale 1ns / 1psmodule BPA_tb;
reg Cin,A0,A1,A2,A3,B0,B1,B2,B3;
wire C1,C2,C3,C4,S0,S1,S2,S3;BPA u_BPA (.Cin(Cin ),.A0(A0 ),.A1(A1 ),.A2(A2 ),.A3(A3 ),.B0(B0 ),.B1(B1 ),.B2(B2 ),.B3(B3 ),.C1(C1 ),.C2(C2 ),.C3(C3 ),.C4(C4 ),.S0(S0 ),.S1(S1 ),.S2(S2 ),.S3(S3 )
);initial beginCin = 1'b0;A0 = 1'b0;A1 = 1'b0;A2 = 1'b0;A3 = 1'b0;B0 = 1'b0;B1 = 1'b0;B2 = 1'b0;B3 = 1'b0;
endalways@(Cin or A0 or A1 or A2 or A3 or B0 or B1 or B2 or B3) beginCin <= #10 ~Cin;A0 <= #20 ~A0;A1 <= #40 ~A1;A2 <= #80 ~A2;A3 <= #160 ~A3;B0 <= #320 ~B0;B1 <= #640 ~B1;B2 <= #1280 ~B2;B3 <= #2560 ~B3;
endinitial begin#5120$finish;
endendmodule

0x02 仿真结果

0x03 Schematic 图

📜 Schematic:

4 位二进制并行加法器是四个并行的 1 位全加法器,这意味着对每个位数执行一次加法器运算,然后将得到的和值传递给结果,并将进位值传递给下一位数加法器的进位。

Ⅲ. 实现 4 位二进制并行减法器

0x00 实现要求

解释 4 位二进制并行减法器的结果和仿真过程。

0x01 代码和仿真代码

💬 Design source:

`timescale 1ns / 1psmodule BPS(input bin,input A0,input A1,input A2,input A3,input B0,input B1,input B2,input B3,output b1,output b2,output b3,output b4,output D0,output D1,output D2,output D3);assign D0 = (A0^B0)^bin;
assign b1 = ((~(A0^B0))&bin) | ((~A0)&B0);assign D1 = (A1^B1)^b1;
assign b2 = ((~(A1^B1))&b1) | ((~A1)&B1);assign D2 = (A2^B2)^b2;
assign b3 = ((~(A2^B2))&b2) | ((~A2)&B2);assign D3 = (A3^B3)^b3;
assign b4 = ((~(A3^B3))&b3) | ((~A3)&B3);endmodule

💬 Testbench:

`timescale 1ns / 1psmodule BPS_tb;
reg bin,A0,A1,A2,A3,B0,B1,B2,B3;
wire b1,b2,b3,b4,D0,D1,D2,D3;BPS u_BPS (.A0(A0 ),.A1(A1 ),.A2(A2 ),.A3(A3 ),.B0(B0 ),.B1(B1 ),.B2(B2 ),.B3(B3 ),.bin(bin ),.b1(b1 ),.b2(b2 ),.b3(b3 ),.b4(b4 ),.D0(D0 ),.D1(D1 ),.D2(D2 ),.D3(D3 )
);initial beginbin = 1'b0;A0 = 1'b0;A1 = 1'b0;A2 = 1'b0;A3 = 1'b0;B0 = 1'b0;B1 = 1'b0;B2 = 1'b0;B3 = 1'b0;
endalways@(bin or A0 or A1 or A2 or A3 or B0 or B1 or B2 or B3) beginbin = #10 ~bin;A0 <= #20 ~A0;A1 <= #40 ~A1;A2 <= #80 ~A2;A3 <= #160 ~A3;B0 <= #320 ~B0;B1 <= #640 ~B1;B2 <= #1280 ~B2;B3 <= #2560 ~B3;
endinitial begin#5120$finish;
endendmodule

0x02 仿真结果

🚩 运行结果如下:

0x03 Schematic 图 

📜 Schematic:

4 位二进制并行减法器是四个并行的 1 位全减法器,这意味着对每个位数执行一次减法器运算,然后将所得差值传递给结果,并将借出值传递给下一个位数减法器的借入值。

📌 [ 笔者 ]   floyd
📃 [ 更新 ]   2023.12.3
❌ [ 勘误 ]   /* 暂无 */
📜 [ 声明 ]   由于作者水平有限,本文有错误和不准确之处在所难免,本人也很想知道这些错误,恳望读者批评指正!

📜 参考资料 

Introduction to Logic and Computer Design, Alan Marcovitz, McGrawHill, 2008

Microsoft. MSDN(Microsoft Developer Network)[EB/OL]. []. .

百度百科[EB/OL]. []. https://baike.baidu.com/.

这篇关于【FPGA】Verilog:二进制并行加法器 | 超前进位 | 实现 4 位二进制并行加法器和减法器 | MSI/LSI 运算电路的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/452468

相关文章

C++中零拷贝的多种实现方式

《C++中零拷贝的多种实现方式》本文主要介绍了C++中零拷贝的实现示例,旨在在减少数据在内存中的不必要复制,从而提高程序性能、降低内存使用并减少CPU消耗,零拷贝技术通过多种方式实现,下面就来了解一下... 目录一、C++中零拷贝技术的核心概念二、std::string_view 简介三、std::stri

C++高效内存池实现减少动态分配开销的解决方案

《C++高效内存池实现减少动态分配开销的解决方案》C++动态内存分配存在系统调用开销、碎片化和锁竞争等性能问题,内存池通过预分配、分块管理和缓存复用解决这些问题,下面就来了解一下... 目录一、C++内存分配的性能挑战二、内存池技术的核心原理三、主流内存池实现:TCMalloc与Jemalloc1. TCM

OpenCV实现实时颜色检测的示例

《OpenCV实现实时颜色检测的示例》本文主要介绍了OpenCV实现实时颜色检测的示例,通过HSV色彩空间转换和色调范围判断实现红黄绿蓝颜色检测,包含视频捕捉、区域标记、颜色分析等功能,具有一定的参考... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间

Python实现精准提取 PDF中的文本,表格与图片

《Python实现精准提取PDF中的文本,表格与图片》在实际的系统开发中,处理PDF文件不仅限于读取整页文本,还有提取文档中的表格数据,图片或特定区域的内容,下面我们来看看如何使用Python实... 目录安装 python 库提取 PDF 文本内容:获取整页文本与指定区域内容获取页面上的所有文本内容获取

基于Python实现一个Windows Tree命令工具

《基于Python实现一个WindowsTree命令工具》今天想要在Windows平台的CMD命令终端窗口中使用像Linux下的tree命令,打印一下目录结构层级树,然而还真有tree命令,但是发现... 目录引言实现代码使用说明可用选项示例用法功能特点添加到环境变量方法一:创建批处理文件并添加到PATH1

Java使用HttpClient实现图片下载与本地保存功能

《Java使用HttpClient实现图片下载与本地保存功能》在当今数字化时代,网络资源的获取与处理已成为软件开发中的常见需求,其中,图片作为网络上最常见的资源之一,其下载与保存功能在许多应用场景中都... 目录引言一、Apache HttpClient简介二、技术栈与环境准备三、实现图片下载与保存功能1.

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal

Nexus安装和启动的实现教程

《Nexus安装和启动的实现教程》:本文主要介绍Nexus安装和启动的实现教程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、Nexus下载二、Nexus安装和启动三、关闭Nexus总结一、Nexus下载官方下载链接:DownloadWindows系统根

SpringBoot集成LiteFlow实现轻量级工作流引擎的详细过程

《SpringBoot集成LiteFlow实现轻量级工作流引擎的详细过程》LiteFlow是一款专注于逻辑驱动流程编排的轻量级框架,它以组件化方式快速构建和执行业务流程,有效解耦复杂业务逻辑,下面给大... 目录一、基础概念1.1 组件(Component)1.2 规则(Rule)1.3 上下文(Conte

MySQL 横向衍生表(Lateral Derived Tables)的实现

《MySQL横向衍生表(LateralDerivedTables)的实现》横向衍生表适用于在需要通过子查询获取中间结果集的场景,相对于普通衍生表,横向衍生表可以引用在其之前出现过的表名,本文就来... 目录一、横向衍生表用法示例1.1 用法示例1.2 使用建议前面我们介绍过mysql中的衍生表(From子句