[RoFormer]论文实现:ROFORMER: ENHANCED TRANSFORMER WITH ROTARY POSITION EMBEDDING

本文主要是介绍[RoFormer]论文实现:ROFORMER: ENHANCED TRANSFORMER WITH ROTARY POSITION EMBEDDING,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • 一、完整代码
    • 二、论文解读
      • 2.1 注意力机制
      • 2.2 绝对位置编码
      • 2.3 相对位置编码
      • 2.4 旋转位置编码
        • Long-term decay
        • Adaption for linear attention
      • 2.5 模型效果
    • 三、过程实现
    • 四、整体总结

论文:ROFORMER: ENHANCED TRANSFORMER WITH ROTARY POSITION EMBEDDING
作者:Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, Yunfeng Liu
时间:2021
地址:https://huggingface.co/docs/transformers/model_doc/roformer

一、完整代码

由于Transformer是老生常谈了,这里我们只简要实现RoPE

# 完整代码在这里
class RotaryEmbedding(tf.keras.layers.Layer):def __init__(self,max_wavelength=10000,scaling_factor=1.0,sequence_axis=1,feature_axis=-1,**kwargs):super().__init__(**kwargs)self.max_wavelength = max_wavelengthself.sequence_axis = sequence_axisself.feature_axis = feature_axisself.scaling_factor = scaling_factorself.built = Truedef call(self, inputs, start_index=0):rotary_dim = tf.shape(inputs)[-1]cos_emb, sin_emb = self._compute_cos_sin_embedding(inputs, rotary_dim, start_index)return self._apply_rotary_pos_emb(inputs, cos_emb, sin_emb)def _apply_rotary_pos_emb(self, tensor, cos_emb, sin_emb):x1, x2 = tf.split(tensor, 2, axis=self.feature_axis)half_rot_tensor = tf.concat((-x2, x1), axis=self.feature_axis)return (tf.matmul(tensor,cos_emb)) + (tf.matmul(half_rot_tensor, sin_emb))def _compute_cos_sin_embedding(self, x, rotary_dim, start_index):freq_range = tf.range(0, rotary_dim, 2, dtype="float32")freq_range = tf.cast(freq_range, self.compute_dtype)freq_range = freq_range / tf.cast(self.scaling_factor, self.compute_dtype)inverse_freq = 1.0 / (self.max_wavelength** (freq_range / tf.cast(rotary_dim, self.compute_dtype)))seq_len = tf.shape(x)[self.sequence_axis]tensor = tf.range(seq_len, dtype="float32") + start_indextensor = tf.cast(tensor, dtype=inverse_freq.dtype)freq = tf.einsum("i, j -> ij", tensor, inverse_freq)embedding = tf.concat((freq, freq), axis=self.feature_axis)def get_axis(axis):return axis if axis > 0 else len(x.shape) + axisfeature_axis = get_axis(self.feature_axis)sequence_axis = get_axis(self.sequence_axis)for axis in range(len(x.shape)):if axis != sequence_axis and axis != feature_axis:embedding = tf.expand_dims(embedding, axis)return tf.cos(embedding), tf.sin(embedding)

二、论文解读

RoPE通过其特性优先于现有的位置编码方法,包括序列长度的灵活性、随着相对距离的增加而减少的标记间依赖性,以及用相对位置编码装备线性自注意的能力。在各种长文本分类基准数据集上的实验结果表明,具有RoPE嵌入的Transformer,即RoFormer,具有更好的性能;

RoPE的关键思想是通过将上下文表示与一个旋转矩阵相乘来获取元素的相对位置;

2.1 注意力机制

下面是注意力机制的公式,老生常谈了,给个图就行;

2.2 绝对位置编码

这个是最普通的Transformer采取的编码方式,非常的经典;

2.3 相对位置编码

下图是Transformer-XL采取的编码方式,其目的是为了避免在循环机制中出现位置混淆;

下面两个是Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer采取的编码方式;

可以看到,这里直接把位置编码转化为一个要学习的参数 b i , j b_{i,j} bi,j进行嵌入,自由度非常大;

这里和上图的不同是这里另外添加了绝对位置编码的信息;

DeBERTa: Decoding-enhanced BERT with Disentangled Attention这篇论文中认为常规注意力机制中的 p m T ⋅ W q T ⋅ W k ⋅ p n p_m^T·W_q^T·W_k·p_n pmTWqTWkpn并没有表达相对信息,只是做一个bias的作用,而bias q , k , v q,k,v q,k,v时就已经体现,不需要bias,采取删除的方法,然后把绝对位置信息转化为相对位置信息;

论文说Radford and Narasimhan(这两货是GPT模型的提出者)在2018年的时候对这四种变体进行了比较,发现第四个相对位置编码即删除了bias的相对位置编码最为合理;但让我纳闷的是这不是2020年的论文吗?

2.4 旋转位置编码

旋转位置编码RoPE的关键思想是通过将上下文表示与一个旋转矩阵相乘来编码相对位置;

所以RoPE本质上也是一种相对位置编码,那么其目标肯定 q m T k n q_m^Tk_n qmTkn 只与 x m x_m xm x n x_n xn 以及其相对位置 m − n m-n mn 有关;公式如下:

但凡提到旋转Rotary,肯定是离不开三角函数的,这种方法是把一串序列绕成一个圆,如图所示:

这是我随便从网上下载的图片,简单了解方式即可;第一个位置从3点钟方向开始,把所有的序列逆时针打满一圈,这就是旋转位置编码,论文中有一张图很形象,如图所示:

下面便是上图的公式化表达;

论文中得出这一公式有一个推导,有意思但同时有点长,我把他贴在下面;

不得不感慨,还是咱们中国人把文章写得明白和透彻;

这样做有什么优势呢?

Long-term decay

这里的推理其实很简单,最后一个公式是由图像说明的,

∑ i = 1 d / 2 ∣ S i ∣ \sum_{i=1}^{d/2}|S_i| i=1d/2Si n − m n-m nm上虽然不是单调递减,但是其总体趋势是递减的

Adaption for linear attention

其相对位置不需要学习,不需要训练参数,只需要乘以一个旋转矩阵,类似于绝对编码,但是其实质有相对性;

2.5 模型效果

从下图中可以看到RoPE的效果要比Sinusoidal positional encoding要好;

三、过程实现

class RotaryEmbedding(tf.keras.layers.Layer):def __init__(self,max_wavelength=10000,scaling_factor=1.0,sequence_axis=1,feature_axis=-1,**kwargs):super().__init__(**kwargs)self.max_wavelength = max_wavelengthself.sequence_axis = sequence_axisself.feature_axis = feature_axisself.scaling_factor = scaling_factorself.built = Truedef call(self, inputs, start_index=0):rotary_dim = tf.shape(inputs)[-1]cos_emb, sin_emb = self._compute_cos_sin_embedding(inputs, rotary_dim, start_index)return self._apply_rotary_pos_emb(inputs, cos_emb, sin_emb)def _apply_rotary_pos_emb(self, tensor, cos_emb, sin_emb):x1, x2 = tf.split(tensor, 2, axis=self.feature_axis)half_rot_tensor = tf.concat((-x2, x1), axis=self.feature_axis)return (tf.matmul(tensor,cos_emb)) + (tf.matmul(half_rot_tensor, sin_emb))def _compute_cos_sin_embedding(self, x, rotary_dim, start_index):freq_range = tf.range(0, rotary_dim, 2, dtype="float32")freq_range = tf.cast(freq_range, self.compute_dtype)freq_range = freq_range / tf.cast(self.scaling_factor, self.compute_dtype)inverse_freq = 1.0 / (self.max_wavelength** (freq_range / tf.cast(rotary_dim, self.compute_dtype)))seq_len = tf.shape(x)[self.sequence_axis]tensor = tf.range(seq_len, dtype="float32") + start_indextensor = tf.cast(tensor, dtype=inverse_freq.dtype)freq = tf.einsum("i, j -> ij", tensor, inverse_freq)embedding = tf.concat((freq, freq), axis=self.feature_axis)def get_axis(axis):return axis if axis > 0 else len(x.shape) + axisfeature_axis = get_axis(self.feature_axis)sequence_axis = get_axis(self.sequence_axis)for axis in range(len(x.shape)):if axis != sequence_axis and axis != feature_axis:embedding = tf.expand_dims(embedding, axis)return tf.cos(embedding), tf.sin(embedding)

四、整体总结

中国人牛逼!

这篇关于[RoFormer]论文实现:ROFORMER: ENHANCED TRANSFORMER WITH ROTARY POSITION EMBEDDING的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/452404

相关文章

C++中零拷贝的多种实现方式

《C++中零拷贝的多种实现方式》本文主要介绍了C++中零拷贝的实现示例,旨在在减少数据在内存中的不必要复制,从而提高程序性能、降低内存使用并减少CPU消耗,零拷贝技术通过多种方式实现,下面就来了解一下... 目录一、C++中零拷贝技术的核心概念二、std::string_view 简介三、std::stri

C++高效内存池实现减少动态分配开销的解决方案

《C++高效内存池实现减少动态分配开销的解决方案》C++动态内存分配存在系统调用开销、碎片化和锁竞争等性能问题,内存池通过预分配、分块管理和缓存复用解决这些问题,下面就来了解一下... 目录一、C++内存分配的性能挑战二、内存池技术的核心原理三、主流内存池实现:TCMalloc与Jemalloc1. TCM

OpenCV实现实时颜色检测的示例

《OpenCV实现实时颜色检测的示例》本文主要介绍了OpenCV实现实时颜色检测的示例,通过HSV色彩空间转换和色调范围判断实现红黄绿蓝颜色检测,包含视频捕捉、区域标记、颜色分析等功能,具有一定的参考... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间

Python实现精准提取 PDF中的文本,表格与图片

《Python实现精准提取PDF中的文本,表格与图片》在实际的系统开发中,处理PDF文件不仅限于读取整页文本,还有提取文档中的表格数据,图片或特定区域的内容,下面我们来看看如何使用Python实... 目录安装 python 库提取 PDF 文本内容:获取整页文本与指定区域内容获取页面上的所有文本内容获取

基于Python实现一个Windows Tree命令工具

《基于Python实现一个WindowsTree命令工具》今天想要在Windows平台的CMD命令终端窗口中使用像Linux下的tree命令,打印一下目录结构层级树,然而还真有tree命令,但是发现... 目录引言实现代码使用说明可用选项示例用法功能特点添加到环境变量方法一:创建批处理文件并添加到PATH1

Java使用HttpClient实现图片下载与本地保存功能

《Java使用HttpClient实现图片下载与本地保存功能》在当今数字化时代,网络资源的获取与处理已成为软件开发中的常见需求,其中,图片作为网络上最常见的资源之一,其下载与保存功能在许多应用场景中都... 目录引言一、Apache HttpClient简介二、技术栈与环境准备三、实现图片下载与保存功能1.

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal

Nexus安装和启动的实现教程

《Nexus安装和启动的实现教程》:本文主要介绍Nexus安装和启动的实现教程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、Nexus下载二、Nexus安装和启动三、关闭Nexus总结一、Nexus下载官方下载链接:DownloadWindows系统根

SpringBoot集成LiteFlow实现轻量级工作流引擎的详细过程

《SpringBoot集成LiteFlow实现轻量级工作流引擎的详细过程》LiteFlow是一款专注于逻辑驱动流程编排的轻量级框架,它以组件化方式快速构建和执行业务流程,有效解耦复杂业务逻辑,下面给大... 目录一、基础概念1.1 组件(Component)1.2 规则(Rule)1.3 上下文(Conte

MySQL 横向衍生表(Lateral Derived Tables)的实现

《MySQL横向衍生表(LateralDerivedTables)的实现》横向衍生表适用于在需要通过子查询获取中间结果集的场景,相对于普通衍生表,横向衍生表可以引用在其之前出现过的表名,本文就来... 目录一、横向衍生表用法示例1.1 用法示例1.2 使用建议前面我们介绍过mysql中的衍生表(From子句