[RoFormer]论文实现:ROFORMER: ENHANCED TRANSFORMER WITH ROTARY POSITION EMBEDDING

本文主要是介绍[RoFormer]论文实现:ROFORMER: ENHANCED TRANSFORMER WITH ROTARY POSITION EMBEDDING,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • 一、完整代码
    • 二、论文解读
      • 2.1 注意力机制
      • 2.2 绝对位置编码
      • 2.3 相对位置编码
      • 2.4 旋转位置编码
        • Long-term decay
        • Adaption for linear attention
      • 2.5 模型效果
    • 三、过程实现
    • 四、整体总结

论文:ROFORMER: ENHANCED TRANSFORMER WITH ROTARY POSITION EMBEDDING
作者:Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, Yunfeng Liu
时间:2021
地址:https://huggingface.co/docs/transformers/model_doc/roformer

一、完整代码

由于Transformer是老生常谈了,这里我们只简要实现RoPE

# 完整代码在这里
class RotaryEmbedding(tf.keras.layers.Layer):def __init__(self,max_wavelength=10000,scaling_factor=1.0,sequence_axis=1,feature_axis=-1,**kwargs):super().__init__(**kwargs)self.max_wavelength = max_wavelengthself.sequence_axis = sequence_axisself.feature_axis = feature_axisself.scaling_factor = scaling_factorself.built = Truedef call(self, inputs, start_index=0):rotary_dim = tf.shape(inputs)[-1]cos_emb, sin_emb = self._compute_cos_sin_embedding(inputs, rotary_dim, start_index)return self._apply_rotary_pos_emb(inputs, cos_emb, sin_emb)def _apply_rotary_pos_emb(self, tensor, cos_emb, sin_emb):x1, x2 = tf.split(tensor, 2, axis=self.feature_axis)half_rot_tensor = tf.concat((-x2, x1), axis=self.feature_axis)return (tf.matmul(tensor,cos_emb)) + (tf.matmul(half_rot_tensor, sin_emb))def _compute_cos_sin_embedding(self, x, rotary_dim, start_index):freq_range = tf.range(0, rotary_dim, 2, dtype="float32")freq_range = tf.cast(freq_range, self.compute_dtype)freq_range = freq_range / tf.cast(self.scaling_factor, self.compute_dtype)inverse_freq = 1.0 / (self.max_wavelength** (freq_range / tf.cast(rotary_dim, self.compute_dtype)))seq_len = tf.shape(x)[self.sequence_axis]tensor = tf.range(seq_len, dtype="float32") + start_indextensor = tf.cast(tensor, dtype=inverse_freq.dtype)freq = tf.einsum("i, j -> ij", tensor, inverse_freq)embedding = tf.concat((freq, freq), axis=self.feature_axis)def get_axis(axis):return axis if axis > 0 else len(x.shape) + axisfeature_axis = get_axis(self.feature_axis)sequence_axis = get_axis(self.sequence_axis)for axis in range(len(x.shape)):if axis != sequence_axis and axis != feature_axis:embedding = tf.expand_dims(embedding, axis)return tf.cos(embedding), tf.sin(embedding)

二、论文解读

RoPE通过其特性优先于现有的位置编码方法,包括序列长度的灵活性、随着相对距离的增加而减少的标记间依赖性,以及用相对位置编码装备线性自注意的能力。在各种长文本分类基准数据集上的实验结果表明,具有RoPE嵌入的Transformer,即RoFormer,具有更好的性能;

RoPE的关键思想是通过将上下文表示与一个旋转矩阵相乘来获取元素的相对位置;

2.1 注意力机制

下面是注意力机制的公式,老生常谈了,给个图就行;

2.2 绝对位置编码

这个是最普通的Transformer采取的编码方式,非常的经典;

2.3 相对位置编码

下图是Transformer-XL采取的编码方式,其目的是为了避免在循环机制中出现位置混淆;

下面两个是Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer采取的编码方式;

可以看到,这里直接把位置编码转化为一个要学习的参数 b i , j b_{i,j} bi,j进行嵌入,自由度非常大;

这里和上图的不同是这里另外添加了绝对位置编码的信息;

DeBERTa: Decoding-enhanced BERT with Disentangled Attention这篇论文中认为常规注意力机制中的 p m T ⋅ W q T ⋅ W k ⋅ p n p_m^T·W_q^T·W_k·p_n pmTWqTWkpn并没有表达相对信息,只是做一个bias的作用,而bias q , k , v q,k,v q,k,v时就已经体现,不需要bias,采取删除的方法,然后把绝对位置信息转化为相对位置信息;

论文说Radford and Narasimhan(这两货是GPT模型的提出者)在2018年的时候对这四种变体进行了比较,发现第四个相对位置编码即删除了bias的相对位置编码最为合理;但让我纳闷的是这不是2020年的论文吗?

2.4 旋转位置编码

旋转位置编码RoPE的关键思想是通过将上下文表示与一个旋转矩阵相乘来编码相对位置;

所以RoPE本质上也是一种相对位置编码,那么其目标肯定 q m T k n q_m^Tk_n qmTkn 只与 x m x_m xm x n x_n xn 以及其相对位置 m − n m-n mn 有关;公式如下:

但凡提到旋转Rotary,肯定是离不开三角函数的,这种方法是把一串序列绕成一个圆,如图所示:

这是我随便从网上下载的图片,简单了解方式即可;第一个位置从3点钟方向开始,把所有的序列逆时针打满一圈,这就是旋转位置编码,论文中有一张图很形象,如图所示:

下面便是上图的公式化表达;

论文中得出这一公式有一个推导,有意思但同时有点长,我把他贴在下面;

不得不感慨,还是咱们中国人把文章写得明白和透彻;

这样做有什么优势呢?

Long-term decay

这里的推理其实很简单,最后一个公式是由图像说明的,

∑ i = 1 d / 2 ∣ S i ∣ \sum_{i=1}^{d/2}|S_i| i=1d/2Si n − m n-m nm上虽然不是单调递减,但是其总体趋势是递减的

Adaption for linear attention

其相对位置不需要学习,不需要训练参数,只需要乘以一个旋转矩阵,类似于绝对编码,但是其实质有相对性;

2.5 模型效果

从下图中可以看到RoPE的效果要比Sinusoidal positional encoding要好;

三、过程实现

class RotaryEmbedding(tf.keras.layers.Layer):def __init__(self,max_wavelength=10000,scaling_factor=1.0,sequence_axis=1,feature_axis=-1,**kwargs):super().__init__(**kwargs)self.max_wavelength = max_wavelengthself.sequence_axis = sequence_axisself.feature_axis = feature_axisself.scaling_factor = scaling_factorself.built = Truedef call(self, inputs, start_index=0):rotary_dim = tf.shape(inputs)[-1]cos_emb, sin_emb = self._compute_cos_sin_embedding(inputs, rotary_dim, start_index)return self._apply_rotary_pos_emb(inputs, cos_emb, sin_emb)def _apply_rotary_pos_emb(self, tensor, cos_emb, sin_emb):x1, x2 = tf.split(tensor, 2, axis=self.feature_axis)half_rot_tensor = tf.concat((-x2, x1), axis=self.feature_axis)return (tf.matmul(tensor,cos_emb)) + (tf.matmul(half_rot_tensor, sin_emb))def _compute_cos_sin_embedding(self, x, rotary_dim, start_index):freq_range = tf.range(0, rotary_dim, 2, dtype="float32")freq_range = tf.cast(freq_range, self.compute_dtype)freq_range = freq_range / tf.cast(self.scaling_factor, self.compute_dtype)inverse_freq = 1.0 / (self.max_wavelength** (freq_range / tf.cast(rotary_dim, self.compute_dtype)))seq_len = tf.shape(x)[self.sequence_axis]tensor = tf.range(seq_len, dtype="float32") + start_indextensor = tf.cast(tensor, dtype=inverse_freq.dtype)freq = tf.einsum("i, j -> ij", tensor, inverse_freq)embedding = tf.concat((freq, freq), axis=self.feature_axis)def get_axis(axis):return axis if axis > 0 else len(x.shape) + axisfeature_axis = get_axis(self.feature_axis)sequence_axis = get_axis(self.sequence_axis)for axis in range(len(x.shape)):if axis != sequence_axis and axis != feature_axis:embedding = tf.expand_dims(embedding, axis)return tf.cos(embedding), tf.sin(embedding)

四、整体总结

中国人牛逼!

这篇关于[RoFormer]论文实现:ROFORMER: ENHANCED TRANSFORMER WITH ROTARY POSITION EMBEDDING的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/452404

相关文章

C#高效实现在Word文档中自动化创建图表的可视化方案

《C#高效实现在Word文档中自动化创建图表的可视化方案》本文将深入探讨如何利用C#,结合一款功能强大的第三方库,实现在Word文档中自动化创建图表,为你的数据呈现和报告生成提供一套实用且高效的解决方... 目录Word文档图表自动化:为什么选择C#?从零开始:C#实现Word文档图表的基本步骤深度优化:C

nginx跨域访问配置的几种方法实现

《nginx跨域访问配置的几种方法实现》本文详细介绍了Nginx跨域配置方法,包括基本配置、只允许指定域名、携带Cookie的跨域、动态设置允许的Origin、支持不同路径的跨域控制、静态资源跨域以及... 目录一、基本跨域配置二、只允许指定域名跨域三、完整示例四、配置后重载 nginx五、注意事项六、支持

Qt实现对Word网页的读取功能

《Qt实现对Word网页的读取功能》文章介绍了几种在Qt中实现Word文档(.docx/.doc)读写功能的方法,包括基于QAxObject的COM接口调用、DOCX模板替换及跨平台解决方案,重点讨论... 目录1. 核心实现方式2. 基于QAxObject的COM接口调用(Windows专用)2.1 环境

MySQL查看表的历史SQL的几种实现方法

《MySQL查看表的历史SQL的几种实现方法》:本文主要介绍多种查看MySQL表历史SQL的方法,包括通用查询日志、慢查询日志、performance_schema、binlog、第三方工具等,并... 目录mysql 查看某张表的历史SQL1.查看MySQL通用查询日志(需提前开启)2.查看慢查询日志3.

Java实现字符串大小写转换的常用方法

《Java实现字符串大小写转换的常用方法》在Java中,字符串大小写转换是文本处理的核心操作之一,Java提供了多种灵活的方式来实现大小写转换,适用于不同场景和需求,本文将全面解析大小写转换的各种方法... 目录前言核心转换方法1.String类的基础方法2. 考虑区域设置的转换3. 字符级别的转换高级转换

使用Python实现局域网远程监控电脑屏幕的方法

《使用Python实现局域网远程监控电脑屏幕的方法》文章介绍了两种使用Python在局域网内实现远程监控电脑屏幕的方法,方法一使用mss和socket,方法二使用PyAutoGUI和Flask,每种方... 目录方法一:使用mss和socket实现屏幕共享服务端(被监控端)客户端(监控端)方法二:使用PyA

MyBatis-Plus逻辑删除实现过程

《MyBatis-Plus逻辑删除实现过程》本文介绍了MyBatis-Plus如何实现逻辑删除功能,包括自动填充字段、配置与实现步骤、常见应用场景,并展示了如何使用remove方法进行逻辑删除,逻辑删... 目录1. 逻辑删除的必要性编程1.1 逻辑删除的定义1.2 逻辑删php除的优点1.3 适用场景2.

C#借助Spire.XLS for .NET实现在Excel中添加文档属性

《C#借助Spire.XLSfor.NET实现在Excel中添加文档属性》在日常的数据处理和项目管理中,Excel文档扮演着举足轻重的角色,本文将深入探讨如何在C#中借助强大的第三方库Spire.... 目录为什么需要程序化添加Excel文档属性使用Spire.XLS for .NET库实现文档属性管理Sp

Python+FFmpeg实现视频自动化处理的完整指南

《Python+FFmpeg实现视频自动化处理的完整指南》本文总结了一套在Python中使用subprocess.run调用FFmpeg进行视频自动化处理的解决方案,涵盖了跨平台硬件加速、中间素材处理... 目录一、 跨平台硬件加速:统一接口设计1. 核心映射逻辑2. python 实现代码二、 中间素材处

Java数组动态扩容的实现示例

《Java数组动态扩容的实现示例》本文主要介绍了Java数组动态扩容的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1 问题2 方法3 结语1 问题实现动态的给数组添加元素效果,实现对数组扩容,原始数组使用静态分配