【数值计算方法(黄明游)】函数插值与曲线拟合(一):Lagrange插值【理论到程序】

本文主要是介绍【数值计算方法(黄明游)】函数插值与曲线拟合(一):Lagrange插值【理论到程序】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!


文章目录

  • 一、近似表达方式
    • 1. 插值(Interpolation)
    • 2. 拟合(Fitting)
    • 3. 投影(Projection)
  • 二、Lagrange插值
    • 1. 天书
    • 2. 人话
      • 拉格朗日插值方法
      • a. 线性插值(n=1)
        • 基本思想
        • 线性插值与线性方程组
      • b. 抛物插值(n=2)
        • 基本思想
        • 优点和局限性
        • 应用场景
      • c. n次插值
        • 基本思想
        • 插值基函数的选择
        • 优点和和局限性
    • 3. python实现
    • 4. C语言实现

一、近似表达方式

  插值、拟合和投影都是常用的近似表达方式,用于对数据或函数进行估计、预测或表示。

1. 插值(Interpolation)

  指通过已知数据点之间的插值方法,来估计或推算出在这些数据点之间的数值。插值可以用于构建平滑的曲线或曲面,以便在数据点之间进行预测或补充缺失的数据。
在这里插入图片描述

2. 拟合(Fitting)

  指通过选择合适的函数形式和参数,将一个数学模型与已知数据点拟合得最好的过程。拟合的目标是找到一个函数,使其在数据点附近的值与实际观测值尽可能接近。拟合可以用于数据分析、曲线拟合、回归分析等领域。

3. 投影(Projection)

  指将一个向量或一组向量映射到另一个向量空间或子空间上的过程。在线性代数中,投影可以用来找到一个向量在另一个向量或向量空间上的投影或投影分量。投影可以用于降维、数据压缩、特征提取等领域,以及计算机图形学中的投影变换。

二、Lagrange插值

1. 天书

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2. 人话

   Lagrange插值是一种用于通过已知数据点构造一个多项式函数的方法,基于拉格朗日插值多项式的原理(该多项式通过每个数据点并满足相应的条件),拉格朗日插值可用于估计数据点之间的值,而不仅仅是在给定数据点上进行插值。

拉格朗日插值方法

  1. 拉格朗日基函数: 对于给定的插值节点 x 0 , x 1 , … , x n x_0, x_1, \ldots, x_n x0,x1,,xn,拉格朗日插值使用如下的拉格朗日基函数:

    L i ( x ) = ∏ j = 0 , j ≠ i n x − x j x i − x j L_i(x) = \prod_{j=0, j\neq i}^{n} \frac{x - x_j}{x_i - x_j} Li(x)=j=0,j=inxixjxxj

  2. 插值条件: 拉格朗日插值要求插值多项式满足插值条件:对所有 i i i P ( x i ) = y i P(x_i) = y_i P(xi)=yi

  3. 插值多项式: 构造插值多项式为: P ( x ) = ∑ i = 0 n y i L i ( x ) P(x) = \sum_{i=0}^{n} y_i L_i(x) P(x)=i=0nyiLi(x)

  通过这种方法,可以在给定的数据点上获得一个平滑的插值函数,使得在这些数据点之间的任何位置上都可以估计函数的值。Lagrange插值在数据点较少或数据点之间存在较大间隔时可能会出现一些问题,例如插值多项式可能会产生振荡现象,这被称为Runge现象

a. 线性插值(n=1)

基本思想
  1. 插值基函数: 在线性插值中,通常使用线性插值基函数。这些基函数是线性的,通常是一次多项式。在一维线性插值中,最简单的基函数是 1 1 1 x x x

  2. 插值条件: 对于给定的插值节点 x 0 , x 1 x_0, x_1 x0,x1 和对应的函数值 y 0 , y 1 y_0, y_1 y0,y1,线性插值要求插值多项式满足插值条件: P ( x 0 ) = y 0 P(x_0) = y_0 P(x0)=y0 P ( x 1 ) = y 1 P(x_1) = y_1 P(x1)=y1

  3. 构造插值多项式: 构造线性插值多项式为:

    P ( x ) = y 0 ( x − x 1 ) ( x 0 − x 1 ) + y 1 ( x − x 0 ) ( x 1 − x 0 ) P(x) = y_0 \frac{(x - x_1)}{(x_0 - x_1)} + y_1 \frac{(x - x_0)}{(x_1 - x_0)} P(x)=y0(x0x1)(xx1)+y1(x1x0)(xx0)

线性插值与线性方程组

  线性插值的理论基础是线性方程组:通过对插值条件的线性化,我们可以得到一个线性方程组,解这个方程组即可得到插值多项式的系数,进而构造出插值多项式。

b. 抛物插值(n=2)

  抛物插值是一种二次插值方法,它使用二次插值基函数构造插值多项式。抛物插值的基本思想是使用二次多项式来逼近一组给定的插值点。

基本思想
  1. 插值基函数: 插值基函数是二次多项式,即 ( x − x 0 ) ( x − x 1 ) (x - x_0)(x - x_1) (xx0)(xx1) ( x − x 1 ) ( x − x 2 ) (x - x_1)(x - x_2) (xx1)(xx2) ( x − x 2 ) ( x − x 0 ) (x - x_2)(x - x_0) (xx2)(xx0) 这样的形式。

  2. 插值条件: 对于给定的插值节点 x 0 , x 1 , x 2 x_0, x_1, x_2 x0,x1,x2 和对应的函数值 y 0 , y 1 , y 2 y_0, y_1, y_2 y0,y1,y2,抛物插值要求插值多项式满足插值条件: P ( x 0 ) = y 0 P(x_0) = y_0 P(x0)=y0 P ( x 1 ) = y 1 P(x_1) = y_1 P(x1)=y1 P ( x 2 ) = y 2 P(x_2) = y_2 P(x2)=y2

  3. 构造插值多项式: 构造二次插值多项式为:

    P ( x ) = y 0 ( x − x 1 ) ( x − x 2 ) ( x 0 − x 1 ) ( x 0 − x 2 ) + y 1 ( x − x 0 ) ( x − x 2 ) ( x 1 − x 0 ) ( x 1 − x 2 ) + y 2 ( x − x 0 ) ( x − x 1 ) ( x 2 − x 0 ) ( x 2 − x 1 ) P(x) = y_0 \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} + y_1 \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)} + y_2 \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)} P(x)=y0(x0x1)(x0x2)(xx1)(xx2)+y1(x1x0)(x1x2)(xx0)(xx2)+y2(x2x0)(x2x1)(xx0)(xx1)

优点和局限性
  • 优点:

    • 相对于线性插值,抛物插值对曲线的弯曲更为灵活,更能逼近一些非线性的数据分布。
    • 二次插值基函数相对简单,计算相对容易。
  • 局限性:

    • 抛物插值要求插值节点的个数是三个,因此只能处理有三个插值点的情况。
    • 对于一些数据分布不规则或存在噪声的情况,抛物插值可能会过度拟合数据,导致插值结果不稳定。
应用场景

  抛物插值通常适用于对于较小区间内的数据进行插值的情况,例如在某一局部区域内,数据点趋势呈现抛物线状。在这种情况下,抛物插值可以提供较好的拟合效果。然而,在数据分布较为复杂或需要考虑更多插值点的情况下,可能需要考虑更高次数的插值方法或其他插值技术。

c. n次插值

   n n n 次插值是一种一般化的插值方法,它使用 n n n 次多项式来逼近给定的插值点。在 n n n 次插值中,插值多项式的次数是 n n n,这意味着需要 n + 1 n+1 n+1 个互异的插值点来确定插值多项式。以下是关于 n n n 次插值的一些基本概念:

基本思想
  1. 插值基函数: n n n 次插值中,通常使用 n + 1 n+1 n+1 个插值基函数。这些基函数是 n n n 次多项式,可以选择为拉格朗日基函数或其他基函数形式。

  2. 插值条件: 对于给定的 n + 1 n+1 n+1 个插值节点 x 0 , x 1 , … , x n x_0, x_1, \ldots, x_n x0,x1,,xn 和对应的函数值 y 0 , y 1 , … , y n y_0, y_1, \ldots, y_n y0,y1,,yn n n n 次插值要求插值多项式满足插值条件: P ( x i ) = y i P(x_i) = y_i P(xi)=yi 对所有 i = 0 , 1 , … , n i = 0, 1, \ldots, n i=0,1,,n

  3. 构造插值多项式: 构造 n n n 次插值多项式为:

    P ( x ) = ∑ i = 0 n y i L i ( x ) P(x) = \sum_{i=0}^{n} y_i L_i(x) P(x)=i=0nyiLi(x)

    其中 L i ( x ) L_i(x) Li(x) 是插值基函数。

插值基函数的选择
  1. 拉格朗日基函数: n n n 次插值中,拉格朗日基函数是常用的一种选择。每个基函数 L i ( x ) L_i(x) Li(x) 具有以下形式:

    L i ( x ) = ∏ j = 0 , j ≠ i n x − x j x i − x j L_i(x) = \prod_{j=0, j\neq i}^{n} \frac{x - x_j}{x_i - x_j} Li(x)=j=0,j=inxixjxxj

  2. 其他基函数: 除了拉格朗日基函数外,还可以选择其他形式的插值基函数,例如牛顿基函数等。

优点和和局限性
  • 优点:
    • n n n 次插值具有很高的灵活性,可以逼近复杂的数据分布。
    • 适用于一般性的插值问题,可以处理较多的插值点。
  • 限制:
    • 随着 n n n 的增加,插值多项式的次数增加,计算和存储开销也增加。
    • 对于一些高次插值问题,可能会受到龙格现象(Runge’s phenomenon)的影响,导致插值结果不稳定。

3. python实现

import numpy as np# 定义Lagrange插值函数
def lagrange_interpolation(x, y, xi):n = len(x)yi = 0.0for i in range(n):# 计算拉格朗日插值多项式的每一项term = y[i]for j in range(n):if j != i:term *= (xi - x[j]) / (x[i] - x[j])yi += termreturn yi# 示例数据点
x = np.array([0.32, 0.34, 0.36])
y = np.array([0.314567, 0.333487, 0.352274])# 要进行插值的点
xi = 0.3367# 进行插值
yi = lagrange_interpolation(x, y, xi)print("插值结果:", yi)
print("真实结果:", np.sin(xi))

输出:

插值结果: 0.3303743620374999
真实结果: 0.330374191555628

4. C语言实现

#include <stdio.h>// 计算Lagrange插值多项式的值
double lagrange_interpolation(double x[], double y[], int n, double xi) {double yi = 0.0;for (int i = 0; i < n; i++) {double term = y[i];for (int j = 0; j < n; j++) {if (j != i) {term *= (xi - x[j]) / (x[i] - x[j]);}}yi += term;}return yi;
}int main() {// 示例数据点double x[] = {0.32, 0.34, 0.36};double y[] = {0.314567, 0.333487, 0.352274};// 要进行插值的点double xi = 0.3367;// 数据点的个数int n = sizeof(x) / sizeof(x[0]);// 进行插值double yi = lagrange_interpolation(x, y, n, xi);printf("插值结果:%f\n", yi);return 0;
}

输出:

插值结果:0.330374

这篇关于【数值计算方法(黄明游)】函数插值与曲线拟合(一):Lagrange插值【理论到程序】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/452085

相关文章

MySQL常用字符串函数示例和场景介绍

《MySQL常用字符串函数示例和场景介绍》MySQL提供了丰富的字符串函数帮助我们高效地对字符串进行处理、转换和分析,本文我将全面且深入地介绍MySQL常用的字符串函数,并结合具体示例和场景,帮你熟练... 目录一、字符串函数概述1.1 字符串函数的作用1.2 字符串函数分类二、字符串长度与统计函数2.1

python使用try函数详解

《python使用try函数详解》Pythontry语句用于异常处理,支持捕获特定/多种异常、else/final子句确保资源释放,结合with语句自动清理,可自定义异常及嵌套结构,灵活应对错误场景... 目录try 函数的基本语法捕获特定异常捕获多个异常使用 else 子句使用 finally 子句捕获所

C# $字符串插值的使用

《C#$字符串插值的使用》本文介绍了C#中的字符串插值功能,详细介绍了使用$符号的实现方式,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习吧... 目录$ 字符使用方式创建内插字符串包含不同的数据类型控制内插表达式的格式控制内插表达式的对齐方式内插表达式中使用转义序列内插表达式中使用

postgresql使用UUID函数的方法

《postgresql使用UUID函数的方法》本文给大家介绍postgresql使用UUID函数的方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录PostgreSQL有两种生成uuid的方法。可以先通过sql查看是否已安装扩展函数,和可以安装的扩展函数

MySQL字符串常用函数详解

《MySQL字符串常用函数详解》本文给大家介绍MySQL字符串常用函数,本文结合实例代码给大家介绍的非常详细,对大家学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录mysql字符串常用函数一、获取二、大小写转换三、拼接四、截取五、比较、反转、替换六、去空白、填充MySQL字符串常用函数一、

C++中assign函数的使用

《C++中assign函数的使用》在C++标准模板库中,std::list等容器都提供了assign成员函数,它比操作符更灵活,支持多种初始化方式,下面就来介绍一下assign的用法,具有一定的参考价... 目录​1.assign的基本功能​​语法​2. 具体用法示例​​​(1) 填充n个相同值​​(2)

MySql基本查询之表的增删查改+聚合函数案例详解

《MySql基本查询之表的增删查改+聚合函数案例详解》本文详解SQL的CURD操作INSERT用于数据插入(单行/多行及冲突处理),SELECT实现数据检索(列选择、条件过滤、排序分页),UPDATE... 目录一、Create1.1 单行数据 + 全列插入1.2 多行数据 + 指定列插入1.3 插入否则更

PostgreSQL中rank()窗口函数实用指南与示例

《PostgreSQL中rank()窗口函数实用指南与示例》在数据分析和数据库管理中,经常需要对数据进行排名操作,PostgreSQL提供了强大的窗口函数rank(),可以方便地对结果集中的行进行排名... 目录一、rank()函数简介二、基础示例:部门内员工薪资排名示例数据排名查询三、高级应用示例1. 每

全面掌握 SQL 中的 DATEDIFF函数及用法最佳实践

《全面掌握SQL中的DATEDIFF函数及用法最佳实践》本文解析DATEDIFF在不同数据库中的差异,强调其边界计算原理,探讨应用场景及陷阱,推荐根据需求选择TIMESTAMPDIFF或inte... 目录1. 核心概念:DATEDIFF 究竟在计算什么?2. 主流数据库中的 DATEDIFF 实现2.1

golang程序打包成脚本部署到Linux系统方式

《golang程序打包成脚本部署到Linux系统方式》Golang程序通过本地编译(设置GOOS为linux生成无后缀二进制文件),上传至Linux服务器后赋权执行,使用nohup命令实现后台运行,完... 目录本地编译golang程序上传Golang二进制文件到linux服务器总结本地编译Golang程序