使用VC++实现锐化处理(使用Sobel算子、Prewitt算子、Isotropic算子)

2023-12-03 18:20

本文主要是介绍使用VC++实现锐化处理(使用Sobel算子、Prewitt算子、Isotropic算子),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

使用VC++实现锐化处理(使用Sobel算子、Prewitt算子、Isotropic算子)

获取源工程可访问gitee可在此工程的基础上进行学习。
该工程的其他文章:
01- 一元熵值、二维熵值
02- 图像平移变换,图像缩放、图像裁剪、图像对角线镜像以及图像的旋转
03-邻域平均平滑算法、中值滤波算法、K近邻均值滤波器
04-分段线性变换,直方图均衡化、锐化处理
05-基于拉普拉斯算子、Canny的边缘检测功能、实现Otsu分割方法
06-最近邻插值,双线性插值,立方卷积插值
07-全局固定阈值分割、自适应阈值分割
08-K近邻中值滤波器(KNNMF)、最小均方差滤波器、矢量中值滤波算法

文章目录

  • 使用VC++实现锐化处理(使用Sobel算子、Prewitt算子、Isotropic算子)
    • 实验内容
    • 一、Sobel算子
      • 1.Sobel算子锐化原理
      • 2.Sobel算子锐化实验代码
      • 3.Sobel算子锐化现象
    • 二、Prewitt算子
      • 1.Prewitt算子锐化原理
      • 2.Prewitt算子锐化实验代码
      • 3.Prewitt算子锐化实验现象
    • 三、Isotropic算子
      • 1.Isotropic算子锐化原理
      • 2.Isotropic算子锐化实验代码
      • 3.Isotropic算子锐化实验现象

实验内容

对一幅256级灰度图像,使用VC++实现锐化处理(使用Sobel算子、Prewitt算子、Isotropic算子)。

一、Sobel算子

1.Sobel算子锐化原理

Sobel算子是一种常用于图像处理的边缘检测算子,也可用于图像锐化。其原理基于对图像的卷积操作,计算图像中每个像素点的梯度值。Sobel算子有水平方向和垂直方向两种核,分别用于检测图像中的水平和垂直边缘。

Sobel算子的水平方向卷积核:

-1  0  1
-2  0  2
-1  0  1

Sobel算子的垂直方向卷积核:

-1 -2 -10  0  01  2  1

算法步骤如下:

  1. 对于图像中的每个像素点,将其与Sobel算子的卷积核进行卷积操作,分别计算水平方向和垂直方向的梯度值。

  2. 将水平和垂直方向的梯度值合并,一般使用这两个梯度值的平方和的开根号,得到最终的梯度值。

  3. 将得到的梯度值映射到图像的灰度范围,例如,通过取整和截断的方式将其限定在0到255之间。

  4. 最终得到的图像就是经过Sobel算子锐化后的图像,边缘特征更加明显。

Sobel算子的优势在于简单易实现,对噪声具有一定的抑制作用,常用于图像边缘检测和锐化。

2.Sobel算子锐化实验代码

 // 循环控制变量int y;int x;CSize sizeImage = pDib->GetDimensions();int nWidth = sizeImage.cx ;int nHeight= sizeImage.cy ;int templatewidth = 3;int templateheight = 3;int gx[100] = { 1,0,-1,2,0,-2,1,0,-1 };int gy[100] = { -1,-2,-1,0,0,0,1,2,1 };for (y = 1; y < nHeight - 1; y++)for (x = 1; x < nWidth - 1; x++){double Gx = 0, Gy = 0;for(int k=0;k< templatewidth;k++)for (int m = 0; m < templateheight; m++){int gray = pDoc->m_pDibInit->GetPixelGray(x - templatewidth / 2 + m, y - templateheight / 2 + k);Gx += gx[k * templatewidth + m] * gray;Gy += gy[k * templatewidth + m] * gray;}double G_xy = sqrt(Gx * Gx + Gy * Gy); //平方和开根号pDoc->m_pDibTest->SetPixelGray(x, y, (int)G_xy);}

3.Sobel算子锐化现象

在这里插入图片描述

二、Prewitt算子

1.Prewitt算子锐化原理

Prewitt算子是一种用于图像处理的边缘检测和图像锐化的卷积算子。它类似于Sobel算子,但其权重系数略有不同。Prewitt算子有两个核,分别用于水平和垂直方向的卷积。

水平方向的Prewitt核:

-1  0  1
-1  0  1
-1  0  1

垂直方向的Prewitt核:

-1 -1 -10  0  01  1  1

Prewitt算子的原理是通过卷积计算图像中每个像素点与其周围像素的梯度,以检测图像中的边缘。具体步骤如下:

  1. 对图像进行灰度处理(如果图像不是灰度图)。

  2. 使用水平和垂直方向的Prewitt核对图像进行卷积操作,分别得到水平方向(Gx)和垂直方向(Gy)的梯度图像。

  3. 计算每个像素的梯度大小,通常使用以下公式:

    G = G x 2 + G y 2 G = \sqrt{Gx^2 + Gy^2} G=Gx2+Gy2

  4. 将计算得到的梯度大小映射到新的像素值范围(例如,0到255),以生成最终的锐化图像。

Prewitt算子主要用于强调图像中的垂直或水平边缘。在图像处理中,它常被应用于边缘检测、特征提取和图像增强等任务。

2.Prewitt算子锐化实验代码

只需要在sobel算子的基础上更改两个核

//Prewitt算子int gx[100] = { 1,0,-1,1,0,-1,1,0,-1 };int gy[100] = { -1,-1,-1,0,0,0,1,1,1 };

3.Prewitt算子锐化实验现象

在这里插入图片描述

三、Isotropic算子

1.Isotropic算子锐化原理

在图像处理中,Isotropic算子是一种用于图像锐化的算子,它基于图像的梯度信息,类似于Sobel和Prewitt算子。Isotropic算子主要强调图像中的各个方向的边缘。

Isotropic算子没有固定的卷积核,而是根据图像中每个像素点周围的梯度方向进行动态调整。其原理如下:

  1. 计算梯度: 对图像进行梯度计算,通常使用Sobel、Prewitt或其他梯度算子。这一步会得到每个像素点的梯度强度和方向。

  2. 动态卷积核: 对于每个像素点,根据其梯度方向调整卷积核。通常,Isotropic算子采用一个可旋转的卷积核,可以在不同方向上产生不同的响应。这个卷积核可以根据梯度方向旋转一定的角度。

  3. 卷积操作: 使用动态调整后的卷积核对图像进行卷积操作。这一步产生的结果是在多个方向上对图像进行了锐化处理,以增强图像中各个方向的特征。

  4. 灰度映射: 将卷积操作得到的结果映射到合适的灰度范围,以生成最终的锐化图像。

Isotropic算子的优势在于它对于不同方向的边缘都有较好的响应,能够更全面地提取图像的特征。然而,由于其动态卷积核的设计,计算成本可能较高,具体实现时需要根据应用场景进行权衡。

2.Isotropic算子锐化实验代码

只需要在sobel算子的基础上更改两个核

 //Isotropic算子图像锐化// 设置模板系数double gx[100] = { 1,0,-1,sqrt(2),0,-sqrt(2),1,0,-1 };double gy[100] = { -1,-sqrt(2),-1,0,0,0,1,sqrt(2),1 };

3.Isotropic算子锐化实验现象

在这里插入图片描述

这篇关于使用VC++实现锐化处理(使用Sobel算子、Prewitt算子、Isotropic算子)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/450399

相关文章

Spring Boot整合Redis注解实现增删改查功能(Redis注解使用)

《SpringBoot整合Redis注解实现增删改查功能(Redis注解使用)》文章介绍了如何使用SpringBoot整合Redis注解实现增删改查功能,包括配置、实体类、Repository、Se... 目录配置Redis连接定义实体类创建Repository接口增删改查操作示例插入数据查询数据删除数据更

Java Lettuce 客户端入门到生产的实现步骤

《JavaLettuce客户端入门到生产的实现步骤》本文主要介绍了JavaLettuce客户端入门到生产的实现步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 目录1 安装依赖MavenGradle2 最小化连接示例3 核心特性速览4 生产环境配置建议5 常见问题

使用python生成固定格式序号的方法详解

《使用python生成固定格式序号的方法详解》这篇文章主要为大家详细介绍了如何使用python生成固定格式序号,文中的示例代码讲解详细,具有一定的借鉴价值,有需要的小伙伴可以参考一下... 目录生成结果验证完整生成代码扩展说明1. 保存到文本文件2. 转换为jsON格式3. 处理特殊序号格式(如带圈数字)4

Java使用Swing生成一个最大公约数计算器

《Java使用Swing生成一个最大公约数计算器》这篇文章主要为大家详细介绍了Java使用Swing生成一个最大公约数计算器的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以了解一下... 目录第一步:利用欧几里得算法计算最大公约数欧几里得算法的证明情形 1:b=0情形 2:b>0完成相关代码第二步:加

linux ssh如何实现增加访问端口

《linuxssh如何实现增加访问端口》Linux中SSH默认使用22端口,为了增强安全性或满足特定需求,可以通过修改SSH配置来增加或更改SSH访问端口,具体步骤包括修改SSH配置文件、增加或修改... 目录1. 修改 SSH 配置文件2. 增加或修改端口3. 保存并退出编辑器4. 更新防火墙规则使用uf

Java 的ArrayList集合底层实现与最佳实践

《Java的ArrayList集合底层实现与最佳实践》本文主要介绍了Java的ArrayList集合类的核心概念、底层实现、关键成员变量、初始化机制、容量演变、扩容机制、性能分析、核心方法源码解析、... 目录1. 核心概念与底层实现1.1 ArrayList 的本质1.1.1 底层数据结构JDK 1.7

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

Linux join命令的使用及说明

《Linuxjoin命令的使用及说明》`join`命令用于在Linux中按字段将两个文件进行连接,类似于SQL的JOIN,它需要两个文件按用于匹配的字段排序,并且第一个文件的换行符必须是LF,`jo... 目录一. 基本语法二. 数据准备三. 指定文件的连接key四.-a输出指定文件的所有行五.-o指定输出

Linux jq命令的使用解读

《Linuxjq命令的使用解读》jq是一个强大的命令行工具,用于处理JSON数据,它可以用来查看、过滤、修改、格式化JSON数据,通过使用各种选项和过滤器,可以实现复杂的JSON处理任务... 目录一. 简介二. 选项2.1.2.2-c2.3-r2.4-R三. 字段提取3.1 普通字段3.2 数组字段四.