【动态规划】LeetCode-931.下降路径最小和

2023-12-03 15:30

本文主要是介绍【动态规划】LeetCode-931.下降路径最小和,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

🎈算法那些事专栏说明:这是一个记录刷题日常的专栏,每个文章标题前都会写明这道题使用的算法。专栏每日计划至少更新1道题目,在这立下Flag🚩
🏠个人主页:Jammingpro
📕专栏链接:算法那些事
🎯每日学习一点点,技术累计看得见

题目

题目描述

给你一个 n x n 的 方形 整数数组 matrix ,请你找出并返回通过 matrix 的下降路径 的 最小和 。

下降路径 可以从第一行中的任何元素开始,并从每一行中选择一个元素。在下一行选择的元素和当前行所选元素最多相隔一列(即位于正下方或者沿对角线向左或者向右的第一个元素)。具体来说,位置 (row, col) 的下一个元素应当是 (row + 1, col - 1)、(row + 1, col) 或者 (row + 1, col + 1) 。

执行示例

示例 1:
输入:matrix = [[2,1,3],[6,5,4],[7,8,9]]
输出:13
解释:如图所示,为和最小的两条下降路径
在这里插入图片描述

示例2:
输入:matrix = [[-19,57],[-40,-5]]
输出:-59
解释:如图所示,为和最小的下降路径
在这里插入图片描述

提示

n == matrix.length == matrix[i].length
1 <= n <= 100
-100 <= matrix[i][j] <= 100

题解

题目中说到:在下一行选择的元素和当前行所选元素最多相隔一列(即位于正下方或者沿对角线向左或者向右的第一个元素)。这句话说的是,第i行第j列的元素,可以到达第i+1行第j-1列、第i+1行第j列、第i+1行第j+1列元素。如下图左图所示,第0行第1列元素可以到达第1行第0列、第1行第1列、第1行第2列元素。也就是说,当前元素向下走时,可以向左下走、向下走或者向右下走。反过来说,到达第i行第j列的上一步可以是第i-1第j-1列、第i-1行第j列、第i-1行第j+1列,如下图右图所示。
在这里插入图片描述
题目中所说的最小路径是指:从第0行的任意一个元素出发,每一步向左下、向下或向右下走1步,一直到达最后一行,将上述每一步到达的元素相加后,得最小和。我们可以使用一个dp表(二维数组)保存到达第i行第j列的最小路径和。因为第0行是出发点,所以dp[0][i]=matrix[0][i]。如下图所示(下图显示的内容为示例1)↓↓↓
在这里插入图片描述
余下第i行第0列的元素只能从上面一个元素或者从右上元素到达,因为左上元素不存在,故dp[i][0]=min(dp[i-1][j],dp[i-1][j+1])+matrix[i][0]。以示例1为例,计算第1行第0列元素示意图如下↓↓↓
在这里插入图片描述
与下第i行最后一列元素之恶能从上面一个元素或者从左上元素到达,因为右上元素不存在,故dp[i][最后一个元素下标]=min(dp[i-1][j-1],dp[i-1][j])+matrix[i][最后一个元素下标]。以示例1为例,计算第1行最后一个元素示意图如下↓↓
在这里插入图片描述
每一行总非第1个元素和最后一个元素,均可以由左上、上、右上元素向下一步到达,故dp[i][j]=min(dp[i-1][j-1], min(dp[i-1][j], dp[i-1][j+1]))+matrix[i][j]。以示例1为例,计算第1行下标为1的元素示意图如下↓↓
在这里插入图片描述
因为我们计算到达第i行的最小路径和时,需要知道第i-1行的最小路径和,因此,我们的计算需要从上到下。经过上面的分析,我们可以得到如下代码↓↓↓

class Solution {
public:int minFallingPathSum(vector<vector<int>>& matrix) {int n = matrix.size();vector<vector<int>>dp(n, vector<int>(n));for(int i = 0; i < n; i++)dp[0][i] = matrix[0][i];for(int i = 1; i < n; i++){dp[i][0] = min(dp[i - 1][0], dp[i - 1][1]) + matrix[i][0];dp[i][n - 1] = min(dp[i - 1][n - 2], dp[i - 1][n - 1]) + matrix[i][n - 1];for(int j = 1; j < n - 1; j++)dp[i][j] = min(dp[i - 1][j - 1], min(dp[i - 1][j], dp[i - 1][j + 1])) + matrix[i][j];}int ret = INT_MAX;for(int i = 0; i < n; i++)ret = min(ret, dp[n - 1][i]);return ret;}
};

上面代码中需要额外考虑每一行的第1个元素和最后1个元素,还需要额外考虑第1行。我们可以通过对dp表多开辟1行2列,来避免额外考虑上述内容。dp表第0行初始化为0,这样不会影响第1行元素的计算,因为min(dp[i-1][j-1],min(dp[i-1][j],dp[i-1][j+1]))的值始终为0。而第0列和最后一列初始化为INT_MAX(int类型所能表示的最大值),这样在计算min(dp[i-1][j-1],min(dp[i-1][j],dp[i-1][j+1]))时,始终不可能选到INT_MAX所在的那一个元素,因为其数值最大。新开辟的dp表示意图如下,下图标注的※号位置对应于上述代码的dp表↓↓↓
在这里插入图片描述
通过dp增开1行2列后的代码如下,其代码行数有所缩减↓↓↓

class Solution {
public:int minFallingPathSum(vector<vector<int>>& matrix) {int n = matrix.size();vector<vector<int>>dp(n + 1, vector<int>(n + 2, INT_MAX));for(int i = 0; i <= n + 1; i++)dp[0][i] = 0;for(int i = 1; i <= n; i++)for(int j = 1; j <= n; j++)dp[i][j] = min(dp[i - 1][j - 1], min(dp[i - 1][j], dp[i - 1][j + 1])) + matrix[i - 1][j - 1];int ret = INT_MAX;for(int i = 1; i <= n; i++)ret = min(ret, dp[n][i]);return ret;}
};

本文存在不足,欢迎留言或私信批评、指正。希望我的解决方法能够对你有所帮助~~
今日打卡完成,点亮小星星☆→★

这篇关于【动态规划】LeetCode-931.下降路径最小和的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/449932

相关文章

Java数组动态扩容的实现示例

《Java数组动态扩容的实现示例》本文主要介绍了Java数组动态扩容的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1 问题2 方法3 结语1 问题实现动态的给数组添加元素效果,实现对数组扩容,原始数组使用静态分配

MyBatis-Plus使用动态表名分表查询的实现

《MyBatis-Plus使用动态表名分表查询的实现》本文主要介绍了MyBatis-Plus使用动态表名分表查询,主要是动态修改表名的几种常见场景,文中通过示例代码介绍的非常详细,对大家的学习或者工作... 目录1. 引入依赖2. myBATis-plus配置3. TenantContext 类:租户上下文

Java中的随机数生成案例从范围字符串到动态区间应用

《Java中的随机数生成案例从范围字符串到动态区间应用》本文介绍了在Java中生成随机数的多种方法,并通过两个案例解析如何根据业务需求生成特定范围的随机数,本文通过两个实际案例详细介绍如何在java中... 目录Java中的随机数生成:从范围字符串到动态区间应用引言目录1. Java中的随机数生成基础基本随

基于Nacos实现SpringBoot动态定时任务调度

《基于Nacos实现SpringBoot动态定时任务调度》本文主要介绍了在SpringBoot项目中使用SpringScheduling实现定时任务,并通过Nacos动态配置Cron表达式实现任务的动... 目录背景实现动态变更定时机制配置化 cron 表达式Spring schedule 调度规则追踪定时

Spring Gateway动态路由实现方案

《SpringGateway动态路由实现方案》本文主要介绍了SpringGateway动态路由实现方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随... 目录前沿何为路由RouteDefinitionRouteLocator工作流程动态路由实现尾巴前沿S

利用Python把路径转为绝对路径的方法

《利用Python把路径转为绝对路径的方法》在Python中,如果你有一个相对路径并且想将其转换为绝对路径,你可以使用Path对象的resolve()方法,Path是Python标准库pathlib中... 目录1. os.path.abspath 是什么?怎么用?基本用法2. os.path.abspat

Python动态处理文件编码的完整指南

《Python动态处理文件编码的完整指南》在Python文件处理的高级应用中,我们经常会遇到需要动态处理文件编码的场景,本文将深入探讨Python中动态处理文件编码的技术,有需要的小伙伴可以了解下... 目录引言一、理解python的文件编码体系1.1 Python的IO层次结构1.2 编码问题的常见场景二

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

Java使用Javassist动态生成HelloWorld类

《Java使用Javassist动态生成HelloWorld类》Javassist是一个非常强大的字节码操作和定义库,它允许开发者在运行时创建新的类或者修改现有的类,本文将简单介绍如何使用Javass... 目录1. Javassist简介2. 环境准备3. 动态生成HelloWorld类3.1 创建CtC

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达