轻量封装WebGPU渲染系统示例<42>- vsm阴影实现过程(源码)

本文主要是介绍轻量封装WebGPU渲染系统示例<42>- vsm阴影实现过程(源码),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前向实时渲染vsm阴影实现的主要步骤:

        1. 编码深度数据,存到一个rtt中。

        2. 纵向和横向执行遮挡信息blur filter sampling, 存到对应的rtt中。

        3. 将上一步的结果(rtt)应用到可接收阴影的材质中。

具体代码情况文章最后附上的实现源码。

当前示例源码github地址:

https://github.com/vilyLei/voxwebgpu/blob/feature/rendering/src/voxgpu/sample/BaseVSMShadowTest.ts

当前示例运行效果:

主要的WGSL Shader代码:

编码深度:

struct VertexOutput {@builtin(position) Position: vec4<f32>,@location(0) projPos: vec4<f32>,@location(1) objPos: vec4<f32>
}
@vertex
fn vertMain(@location(0) position: vec3<f32>
) -> VertexOutput {let objPos = vec4(position.xyz, 1.0);let wpos = objMat * objPos;var output: VertexOutput;let projPos = projMat * viewMat * wpos;output.Position = projPos;output.projPos = projPos;output.objPos = objPos;return output;
}const PackUpscale = 256. / 255.; // fraction -> 0..1 (including 1)
const UnpackDownscale = 255. / 256.; // 0..1 -> fraction (excluding 1)const PackFactors = vec3<f32>(256. * 256. * 256., 256. * 256., 256.);
const UnpackFactors = UnpackDownscale / vec4<f32>(PackFactors, 1.0);const ShiftRight8 = 1. / 256.;fn packDepthToRGBA(v: f32) -> vec4<f32> {var r = vec4<f32>(fract(v * PackFactors), v);let v3 = r.yzw - (r.xyz * ShiftRight8);r = vec4<f32>(v3.x, v3);return r * PackUpscale;
}@fragment
fn fragMain(@location(0) projPos: vec4<f32>,@location(1) objPos: vec4<f32>
) -> @location(0) vec4<f32> {let fragCoordZ = 0.5 * projPos[2] / projPos[3] + 0.5;var color4 = packDepthToRGBA( fragCoordZ );return color4;
}

纵向和横向执行遮挡信息blur filter sampling:

struct VertexOutput {@builtin(position) Position: vec4<f32>,@location(0) uv: vec2<f32>
}
@vertex
fn vertMain(@location(0) position: vec3<f32>,@location(1) uv: vec2<f32>
) -> VertexOutput {var output: VertexOutput;output.Position = vec4(position.xyz, 1.0);output.uv = uv;return output;
}const PackUpscale = 256. / 255.; // fraction -> 0..1 (including 1)
const UnpackDownscale = 255. / 256.; // 0..1 -> fraction (excluding 1)const PackFactors = vec3<f32>(256. * 256. * 256., 256. * 256., 256.);
const UnpackFactors = UnpackDownscale / vec4<f32>(PackFactors, 1.0);const ShiftRight8 = 1. / 256.;fn packDepthToRGBA(v: f32) -> vec4<f32> {var r = vec4<f32>(fract(v * PackFactors), v);let v3 = r.yzw - (r.xyz * ShiftRight8);return vec4<f32>(v3.x, v3) * PackUpscale;
}fn unpackRGBAToDepth( v: vec4<f32> ) -> f32 {return dot( v, UnpackFactors );
}fn pack2HalfToRGBA( v: vec2<f32> ) -> vec4<f32> {let r = vec4( v.x, fract( v.x * 255.0 ), v.y, fract( v.y * 255.0 ));return vec4<f32>( r.x - r.y / 255.0, r.y, r.z - r.w / 255.0, r.w);
}
fn unpackRGBATo2Half( v: vec4<f32> ) -> vec2<f32> {return vec2<f32>( v.x + ( v.y / 255.0 ), v.z + ( v.w / 255.0 ) );
}const SAMPLE_RATE = 0.25;
const HALF_SAMPLE_RATE = 0.125;
@fragment
fn fragMain(@location(0) uv: vec2<f32>,
) -> @location(0) vec4<f32> {var mean = 0.0;var squared_mean = 0.0;let resolution = viewParam.zw;let fragCoord = resolution * uv;let radius = param[3];let c4 = textureSample(shadowDepthTexture, shadowDepthSampler, uv);var depth = unpackRGBAToDepth( c4 );for ( var i = -1.0; i < 1.0 ; i += SAMPLE_RATE) {#ifdef USE_HORIZONAL_PASSlet distribution = unpackRGBATo2Half( textureSample(shadowDepthTexture, shadowDepthSampler, ( fragCoord.xy + vec2( i, 0.0 ) * radius ) / resolution ) );mean += distribution.x;squared_mean += distribution.y * distribution.y + distribution.x * distribution.x;#elsedepth = unpackRGBAToDepth( textureSample(shadowDepthTexture, shadowDepthSampler, ( fragCoord.xy + vec2( 0.0, i ) * radius ) / resolution ) );mean += depth;squared_mean += depth * depth;#endif}mean = mean * HALF_SAMPLE_RATE;squared_mean = squared_mean * HALF_SAMPLE_RATE;let std_dev = sqrt( squared_mean - mean * mean );var color4 = pack2HalfToRGBA( vec2<f32>( mean, std_dev ) );return color4;
}

应用到可接收阴影的材质中(示例用法):


struct VertexOutput {@builtin(position) Position: vec4<f32>,@location(0) uv: vec2<f32>,@location(1) worldNormal: vec3<f32>,@location(2) svPos: vec4<f32>
}
@vertex
fn vertMain(@location(0) position: vec3<f32>,@location(1) uv: vec2<f32>,@location(2) normal: vec3<f32>
) -> VertexOutput {let objPos = vec4(position.xyz, 1.0);let wpos = objMat * objPos;var output: VertexOutput;let projPos = projMat * viewMat * wpos;output.Position = projPos;// output.normal = normal;let invMat33 = inverseM33(m44ToM33(objMat));output.uv = uv;output.worldNormal = normalize(normal * invMat33);output.svPos = shadowMatrix * wpos;return output;
}fn pack2HalfToRGBA( v: vec2<f32> ) -> vec4<f32> {let r = vec4( v.x, fract( v.x * 255.0 ), v.y, fract( v.y * 255.0 ));return vec4<f32>( r.x - r.y / 255.0, r.y, r.z - r.w / 255.0, r.w);
}
fn unpackRGBATo2Half( v: vec4<f32> ) -> vec2<f32> {return vec2<f32>( v.x + ( v.y / 255.0 ), v.z + ( v.w / 255.0 ) );
}fn texture2DDistribution( uv: vec2<f32> ) -> vec2<f32> {let v4 = textureSample(shadowDepthTexture, shadowDepthSampler, uv );return unpackRGBATo2Half( v4 );}
fn VSMShadow (uv: vec2<f32>, compare: f32 ) -> f32 {var occlusion = 1.0;let distribution = texture2DDistribution( uv );let hard_shadow = step( compare , distribution.x ); // Hard Shadowif (hard_shadow != 1.0 ) {let distance = compare - distribution.x ;let variance = max( 0.00000, distribution.y * distribution.y );var softness_probability = variance / (variance + distance * distance ); // Chebeyshevs inequalitysoftness_probability = clamp( ( softness_probability - 0.3 ) / ( 0.95 - 0.3 ), 0.0, 1.0 ); // 0.3 reduces light bleedocclusion = clamp( max( hard_shadow, softness_probability ), 0.0, 1.0 );}return occlusion;}
fn getVSMShadow( shadowMapSize: vec2<f32>, shadowBias: f32, shadowRadius: f32, shadowCoordP: vec4<f32> ) -> f32 {var shadowCoord = vec4<f32>(shadowCoordP.xyz / vec3<f32>(shadowCoordP.w), shadowCoordP.z + shadowBias);let inFrustumVec = vec4<bool> ( shadowCoord.x >= 0.0, shadowCoord.x <= 1.0, shadowCoord.y >= 0.0, shadowCoord.y <= 1.0 );let inFrustum = all( inFrustumVec );let frustumTestVec = vec2<bool>( inFrustum, shadowCoord.z <= 1.0 );var shadow = VSMShadow( shadowCoord.xy, shadowCoord.z );if ( !all( frustumTestVec ) ) {shadow = 1.0;}return shadow;
}@fragment
fn fragMain(@location(0) uv: vec2<f32>,@location(1) worldNormal: vec3<f32>,@location(2) svPos: vec4<f32>
) -> @location(0) vec4<f32> {var color = vec4<f32>(1.0);var shadow = getVSMShadow(params[1].xy, params[0].x, params[0].z, svPos );let shadowIntensity = 1.0 - params[0].w;shadow = clamp(shadow, 0.0, 1.0) * (1.0 - shadowIntensity) + shadowIntensity;var f = clamp(dot(worldNormal, params[2].xyz),0.0,1.0);if(f > 0.0001) {f = min(shadow,clamp(f, shadowIntensity,1.0));}else {f = shadowIntensity;}var color4 = vec4<f32>(color.xyz * vec3(f * 0.9 + 0.1), 1.0);return color4;
}

此示例基于此渲染系统实现,当前示例TypeScript源码如下:

export class BaseVSMShadowTest {private mRscene = new RendererScene();private mShadowCamera: Camera;private mDebug = false;initialize(): void {this.mRscene.initialize({canvasWith: 512,canvasHeight: 512,rpassparam: { multisampleEnabled: true }});this.initScene();this.initEvent();}private mEntities: Entity3D[] = [];private initScene(): void {let rc = this.mRscene;this.buildShadowCam();let sph = new SphereEntity({radius: 80,transform: {position: [-230.0, 100.0, -200.0]}});this.mEntities.push(sph);rc.addEntity(sph);let box = new BoxEntity({minPos: [-30, -30, -30],maxPos: [130, 230, 80],transform: {position: [160.0, 100.0, -210.0],rotation: [50, 130, 80]}});this.mEntities.push(box);rc.addEntity(box);let torus = new TorusEntity({transform: {position: [160.0, 100.0, 210.0],rotation: [50, 30, 80]}});this.mEntities.push(torus);rc.addEntity(torus);if (!this.mDebug) {this.applyShadow();}}private mShadowDepthRTT = { uuid: "rtt-shadow-depth", rttTexture: {}, shdVarName: 'shadowDepth' };private mOccVRTT = { uuid: "rtt--occV", rttTexture: {}, shdVarName: 'shadowDepth' };private mOccHRTT = { uuid: "rtt--occH", rttTexture: {}, shdVarName: 'shadowDepth' };private applyShadowDepthRTT(): void {let rc = this.mRscene;// rtt texture proxy descriptorlet rttTex = this.mShadowDepthRTT;// define a rtt pass color colorAttachment0let colorAttachments = [{texture: rttTex,// green clear background colorclearValue: { r: 1, g: 1, b: 1, a: 1.0 },loadOp: "clear",storeOp: "store"}];// create a separate rtt rendering passlet rPass = rc.createRTTPass({ colorAttachments });rPass.node.camera = this.mShadowCamera;let extent = [-0.5, -0.5, 0.8, 0.8];const shadowDepthShdSrc = {shaderSrc: { code: shadowDepthWGSL, uuid: "shadowDepthShdSrc" }};let material = this.createDepthMaterial(shadowDepthShdSrc);let es = this.createDepthEntities([material], false);for (let i = 0; i < es.length; ++i) {rPass.addEntity(es[i]);}// 显示渲染结果extent = [-0.95, -0.95, 0.4, 0.4];let entity = new FixScreenPlaneEntity({ extent, flipY: true, textures: [{ diffuse: rttTex }] });rc.addEntity(entity);}private applyBuildDepthOccVRTT(): void {let rc = this.mRscene;// rtt texture proxy descriptorlet rttTex = this.mOccVRTT;// define a rtt pass color colorAttachment0let colorAttachments = [{texture: rttTex,// green clear background colorclearValue: { r: 1, g: 1, b: 1, a: 1.0 },loadOp: "clear",storeOp: "store"}];// create a separate rtt rendering passlet rPass = rc.createRTTPass({ colorAttachments });let material = new ShadowOccBlurMaterial();let ppt = material.property;ppt.setShadowRadius(this.mShadowRadius);ppt.setViewSize(this.mShadowMapW, this.mShadowMapH);material.addTextures([this.mShadowDepthRTT]);let extent = [-1, -1, 2, 2];let rttEntity = new FixScreenPlaneEntity({ extent, materials: [material] });rPass.addEntity(rttEntity);// 显示渲染结果extent = [-0.5, -0.95, 0.4, 0.4];let entity = new FixScreenPlaneEntity({ extent, flipY: true, textures: [{ diffuse: rttTex }] });rc.addEntity(entity);}private applyBuildDepthOccHRTT(): void {let rc = this.mRscene;// rtt texture proxy descriptorlet rttTex = this.mOccHRTT;// define a rtt pass color colorAttachment0let colorAttachments = [{texture: rttTex,// green clear background colorclearValue: { r: 1, g: 1, b: 1, a: 1.0 },loadOp: "clear",storeOp: "store"}];// create a separate rtt rendering passlet rPass = rc.createRTTPass({ colorAttachments });let material = new ShadowOccBlurMaterial();let ppt = material.property;ppt.setShadowRadius(this.mShadowRadius);ppt.setViewSize(this.mShadowMapW, this.mShadowMapH);material.property.toHorizonalBlur();material.addTextures([this.mOccVRTT]);let extent = [-1, -1, 2, 2];let rttEntity = new FixScreenPlaneEntity({ extent, materials: [material] });rPass.addEntity(rttEntity);// 显示渲染结果extent = [-0.05, -0.95, 0.4, 0.4];let entity = new FixScreenPlaneEntity({ extent, flipY: true, textures: [{ diffuse: rttTex }] });rc.addEntity(entity);}private createDepthMaterial(shaderSrc: WGRShderSrcType, faceCullMode = "none"): WGMaterial {let pipelineDefParam = {depthWriteEnabled: true,faceCullMode,blendModes: [] as string[]};const material = new WGMaterial({shadinguuid: "shadow-depth_material",shaderSrc,pipelineDefParam});return material;}private createDepthEntities(materials: WGMaterial[], flag = false): Entity3D[] {const rc = this.mRscene;let entities = [];let ls = this.mEntities;let tot = ls.length;for (let i = 0; i < tot; ++i) {let et = ls[i];let entity = new Entity3D({ transform: et.transform });entity.materials = materials;entity.geometry = et.geometry;entities.push(entity);if (flag) {rc.addEntity(entity);}}return entities;}private mShadowBias = -0.0005;private mShadowRadius = 2.0;private mShadowMapW = 512;private mShadowMapH = 512;private mShadowViewW = 1300;private mShadowViewH = 1300;private buildShadowCam(): void {const cam = new Camera({eye: [600.0, 800.0, -600.0],near: 0.1,far: 1900,perspective: false,viewWidth: this.mShadowViewW,viewHeight: this.mShadowViewH});cam.update();this.mShadowCamera = cam;const rsc = this.mRscene;let frameColors = [[1.0, 0.0, 1.0], [0.0, 1.0, 1.0], [1.0, 0.0, 0.0], [0.0, 1.0, 1.0]];let boxFrame = new BoundsFrameEntity({ vertices8: cam.frustum.vertices, frameColors });rsc.addEntity(boxFrame);}private initEvent(): void {const rc = this.mRscene;rc.addEventListener(MouseEvent.MOUSE_DOWN, this.mouseDown);new MouseInteraction().initialize(rc, 0, false).setAutoRunning(true);}private mFlag = -1;private buildShadowReceiveEntity(): void {let cam = this.mShadowCamera;let transMatrix = new Matrix4();transMatrix.setScaleXYZ(0.5, -0.5, 0.5);transMatrix.setTranslationXYZ(0.5, 0.5, 0.5);let shadowMat = new Matrix4();shadowMat.copyFrom(cam.viewProjMatrix);shadowMat.append(transMatrix);let material = new ShadowReceiveMaterial();let ppt = material.property;ppt.setShadowRadius(this.mShadowRadius);ppt.setShadowBias(this.mShadowBias);ppt.setShadowSize(this.mShadowMapW, this.mShadowMapH);ppt.setShadowMatrix(shadowMat);ppt.setDirec(cam.nv);material.addTextures([this.mOccHRTT]);const rc = this.mRscene;let plane = new PlaneEntity({axisType: 1,extent: [-600, -600, 1200, 1200],transform: {position: [0, -1, 0]},materials: [material]});rc.addEntity(plane);}private applyShadow(): void {this.applyShadowDepthRTT();this.applyBuildDepthOccVRTT();this.applyBuildDepthOccHRTT();this.buildShadowReceiveEntity();}private mouseDown = (evt: MouseEvent): void => {this.mFlag++;if (this.mDebug) {if (this.mFlag == 0) {this.applyShadowDepthRTT();} else if (this.mFlag == 1) {this.applyBuildDepthOccVRTT();} else if (this.mFlag == 2) {this.applyBuildDepthOccHRTT();} else if (this.mFlag == 3) {this.buildShadowReceiveEntity();}}};run(): void {this.mRscene.run();}
}

这篇关于轻量封装WebGPU渲染系统示例<42>- vsm阴影实现过程(源码)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/449553

相关文章

使用animation.css库快速实现CSS3旋转动画效果

《使用animation.css库快速实现CSS3旋转动画效果》随着Web技术的不断发展,动画效果已经成为了网页设计中不可或缺的一部分,本文将深入探讨animation.css的工作原理,如何使用以及... 目录1. css3动画技术简介2. animation.css库介绍2.1 animation.cs

Java进行日期解析与格式化的实现代码

《Java进行日期解析与格式化的实现代码》使用Java搭配ApacheCommonsLang3和Natty库,可以实现灵活高效的日期解析与格式化,本文将通过相关示例为大家讲讲具体的实践操作,需要的可以... 目录一、背景二、依赖介绍1. Apache Commons Lang32. Natty三、核心实现代

SpringBoot实现接口数据加解密的三种实战方案

《SpringBoot实现接口数据加解密的三种实战方案》在金融支付、用户隐私信息传输等场景中,接口数据若以明文传输,极易被中间人攻击窃取,SpringBoot提供了多种优雅的加解密实现方案,本文将从原... 目录一、为什么需要接口数据加解密?二、核心加解密算法选择1. 对称加密(AES)2. 非对称加密(R

基于Go语言实现Base62编码的三种方式以及对比分析

《基于Go语言实现Base62编码的三种方式以及对比分析》Base62编码是一种在字符编码中使用62个字符的编码方式,在计算机科学中,,Go语言是一种静态类型、编译型语言,它由Google开发并开源,... 目录一、标准库现状与解决方案1. 标准库对比表2. 解决方案完整实现代码(含边界处理)二、关键实现细

python通过curl实现访问deepseek的API

《python通过curl实现访问deepseek的API》这篇文章主要为大家详细介绍了python如何通过curl实现访问deepseek的API,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编... API申请和充值下面是deepeek的API网站https://platform.deepsee

ubuntu20.0.4系统中安装Anaconda的超详细图文教程

《ubuntu20.0.4系统中安装Anaconda的超详细图文教程》:本文主要介绍了在Ubuntu系统中如何下载和安装Anaconda,提供了两种方法,详细内容请阅读本文,希望能对你有所帮助... 本文介绍了在Ubuntu系统中如何下载和安装Anaconda。提供了两种方法,包括通过网页手动下载和使用wg

ubuntu系统使用官方操作命令升级Dify指南

《ubuntu系统使用官方操作命令升级Dify指南》Dify支持自动化执行、日志记录和结果管理,适用于数据处理、模型训练和部署等场景,今天我们就来看看ubuntu系统中使用官方操作命令升级Dify的方... Dify 是一个基于 docker 的工作流管理工具,旨在简化机器学习和数据科学领域的多步骤工作流。

SpringBoot实现二维码生成的详细步骤与完整代码

《SpringBoot实现二维码生成的详细步骤与完整代码》如今,二维码的应用场景非常广泛,从支付到信息分享,二维码都扮演着重要角色,SpringBoot是一个非常流行的Java基于Spring框架的微... 目录一、环境搭建二、创建 Spring Boot 项目三、引入二维码生成依赖四、编写二维码生成代码五

Python Selenium动态渲染页面和抓取的使用指南

《PythonSelenium动态渲染页面和抓取的使用指南》在Web数据采集领域,动态渲染页面已成为现代网站的主流形式,本文将从技术原理,环境配置,核心功能系统讲解Selenium在Python动态... 目录一、Selenium技术架构解析二、环境搭建与基础配置1. 组件安装2. 驱动配置3. 基础操作模

MyBatisX逆向工程的实现示例

《MyBatisX逆向工程的实现示例》本文主要介绍了MyBatisX逆向工程的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学... 目录逆向工程准备好数据库、表安装MyBATisX插件项目连接数据库引入依赖pom.XML生成实体类、