图片处理OpenCV IMDecode模式说明【生产问题处理】

2023-12-03 11:15

本文主要是介绍图片处理OpenCV IMDecode模式说明【生产问题处理】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

OpenCV IMDecode模式说明【生产问题处理】

1 前言

今天售后同事反馈说客户使用我们的图片处理,将PNG图片处理为JPG图片之后,变为了白板。

  • 我们图片处理使用的是openCV来进行处理

2 分析

2.1 图片是否损坏:非标准PNG头部

于是,马上写了一个demo尝试本地复现,结果复现概率是:必现。

package mainimport ("fmt""gocv.io/x/gocv"_ "image/jpeg"_ "image/png""io""os"
)func main() {params := []int{gocv.IMWriteJpegQuality, 1}srcFile, err := os.Open("/Users/xxx/GolandProjects/xxx/image-encoder/demo/quality/3.png")if err != nil {fmt.Printf("%v", err)return}defer srcFile.Close()imageBuf, err := io.ReadAll(srcFile)if err != nil {fmt.Printf("%v", err)return}mat, err := gocv.IMDecode(imageBuf, gocv.IMReadUnchanged)if err != nil {fmt.Printf("%v", err)return}buf, err := gocv.IMEncodeWithParams(gocv.JPEGFileExt, mat, params)//buf, err := gocv.IMEncodeWithParams(gocv.JPEGFileExt, mat, params)if err != nil {fmt.Printf("%v", err)return}os.WriteFile("/Users/xxx/GolandProjects/xxx/image-encoder/demo/quality/33.jpg", buf.GetBytes(), os.ModePerm)if err != nil {fmt.Printf("%v", err)return}println("DONE.....")
}

接着尝试将我本地其他的PNG图片转换为JPG,发现可以转换成功。表示这个代码是可以将PNG转换为JPG的。

于是,开始排查是否是客户图片有破损,比如图片的文件头已经损坏,导致它不是一个标准的PNG图片。

在这里插入图片描述

通过查阅资料后发现PNG的头部为89 50 4E 47 0D 0A 1A 0A
在这里插入图片描述

package mainimport ("encoding/hex""fmt""os"
)func main() {filePath := "/Users/xsky/GolandProjects/xxx/image-encoder/demo/quality/11.png" // 替换为你的 PNG 图片文件路径file, err := os.Open(filePath)if err != nil {fmt.Println("Error opening file:", err)return}defer file.Close()header := make([]byte, 8)_, err = file.Read(header)if err != nil {fmt.Println("Error reading file:", err)return}fmt.Println("PNG 文件头的16进制信息:")//89504e470d0a1a0a//89504e470d0a1a0afmt.Println(hex.EncodeToString(header))
}

最终验证发现,客户的PNG图片与我本地PNG图片一致,文件头都是符合PNG格式的。

2.2 Alpha图像通道问题(shooting)

接着想着客户图像是灰白色的,而我之前验证的本地图片为彩色,加上我自己gocv处理图片的参数选择的是gocv.IMReadUnchanged。点进去查看源码,发现还有其他的参数,于是尝试替换其他参数。

//我之前代码的用法
mat, err := gocv.IMDecode(imageBuf, gocv.IMReadUnchanged)
// IMReadUnchanged return the loaded image as is (with alpha channel,
//otherwise it gets cropped).
IMReadUnchanged IMReadFlag = -1 # 处理带有Alpha参数的图像
// IMReadColor always converts image to the 3 channel BGR color image.
IMReadColor IMReadFlag = 1 # 将图片转换为BGR三色通道
// IMReadAnyColor the image is read in any possible color format.
IMReadAnyColor IMReadFlag = 4 # 根据图像自动识别任何可能的格式
...

知道这个参数之后,我将gocv.IMDecode(imageBuf, gocv.IMReadUnchanged)中的IMReadUnchanged改为IMReadAnyColor,最后验证,成功处理客户图片。

目前可以知道,我的图像处理参数选择有问题。于是开始查这几种参数有什么区别。其实点进去看源码就可以知道这几种参数的区别。

这个时候如果对图像处理不熟悉的朋友可能会问,Alpha通道是什么意思,其实大家可以简单的理解为和图像的透明度有关。

为了验证这个结论是否正确,我尝试读取客户的PNG和我本地的彩色PNG的颜色Model是否不同:

//color.RGBAModel # 我自己的图像
//color.Gray16Model # 客户的图像

至此,猜想成立,可以知道是我图像的处理颜色的参数选择有误。

3 拓展:图像color.Model

色彩模型(RGB,RGBA,CMYK灰度)
matplotlib中的色彩定义主要用到了RGB、RGBA、CMYK、灰色四种模型。

  • 这里我主要介绍RGBA模型

对这块感兴趣的朋友可以去看这边文章:https://blog.csdn.net/mighty13/article/details/113616772

3.1 color.RGBAModel:三色+Alpha

带有alpha[RGBA 表示传统的32位预处理 Alpha 色,每个颜色都有8位,分别表示红色,绿色,蓝色和阿尔法。 ]

type RGBA struct {R, G, B, A uint8
}

3.2 color.RGBA64Model:64位表示三色+Alpha的值

带有alpha:64位数来表示每个通道的值

type RGBA64 struct {R, G, B, A uint16
}

3.3 color.NRGBAModel:其他颜色不预乘Alpha的值

NRGBA 表示非 Alpha 预乘32位颜色(非 alpha 预乘表示在进行颜色合成时,颜色值不会提前乘以 alpha 通道的值)

  • 预乘:什么是预乘?假设一个像素点,用RGBA四个分量来表示,记做(R,G,B,A),那预乘后的像素就是(RA,GA,B*A, A),这里A的取值范围是[0,1]。所以,预乘就是每个颜色分量都与该像素的alpha分量预先相乘。可以发现,对于一个没有透明度,或者说透明度为1的像素来说,预乘不预乘结果都是一样的。
  • NRGBA代表一个没有32位透明度加乘的颜色。每个红,绿,蓝和透明度都是8bit的数值
type NRGBA struct {R, G, B, A uint8
}

3.4 color.NRGBA64:非预乘Alpha,其他颜色用64位表示

NRGBA64 表示非 alpha 预乘 64 位颜色,每个红色,绿色,蓝色和 alpha 有 16 位

  • NRGBA64代表无透明度加乘的64-bit的颜色,它的每个红,绿,蓝,和透明度都是个16bit的数值。
type NRGBA struct {R, G, B, A uint16
}

3.5 color.AlphaModel:代表一个8-bit的透明度

type Alpha struct {A uint8
}

3.6 color.Alpha16Model:代表一个16位的透明度

type Alpha struct {A uint16
}

3.7 color.GrayModel:灰度通道,黑白图像

只有一个灰度通道,通常用于表示黑白图像【当你需要读取只带有灰度通道的图像时,你应该使用该标志来读取图像。】【也是由RGB组成,不过由于是单通道,因此呈现灰度】

3.8 color.Gray16Model:16位整数表示灰度通道值

16位整数表示灰度通道的值,通常用于表示黑白

参考:

  • https://blog.csdn.net/zxcasd11/article/details/109446056
  • https://blog.csdn.net/u013943420/article/details/76855416

这篇关于图片处理OpenCV IMDecode模式说明【生产问题处理】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/449244

相关文章

Spring Boot @RestControllerAdvice全局异常处理最佳实践

《SpringBoot@RestControllerAdvice全局异常处理最佳实践》本文详解SpringBoot中通过@RestControllerAdvice实现全局异常处理,强调代码复用、统... 目录前言一、为什么要使用全局异常处理?二、核心注解解析1. @RestControllerAdvice2

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

java中新生代和老生代的关系说明

《java中新生代和老生代的关系说明》:本文主要介绍java中新生代和老生代的关系说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、内存区域划分新生代老年代二、对象生命周期与晋升流程三、新生代与老年代的协作机制1. 跨代引用处理2. 动态年龄判定3. 空间分

Java设计模式---迭代器模式(Iterator)解读

《Java设计模式---迭代器模式(Iterator)解读》:本文主要介绍Java设计模式---迭代器模式(Iterator),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录1、迭代器(Iterator)1.1、结构1.2、常用方法1.3、本质1、解耦集合与遍历逻辑2、统一

Java 线程安全与 volatile与单例模式问题及解决方案

《Java线程安全与volatile与单例模式问题及解决方案》文章主要讲解线程安全问题的五个成因(调度随机、变量修改、非原子操作、内存可见性、指令重排序)及解决方案,强调使用volatile关键字... 目录什么是线程安全线程安全问题的产生与解决方案线程的调度是随机的多个线程对同一个变量进行修改线程的修改操

Redis出现中文乱码的问题及解决

《Redis出现中文乱码的问题及解决》:本文主要介绍Redis出现中文乱码的问题及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1. 问题的产生2China编程. 问题的解决redihttp://www.chinasem.cns数据进制问题的解决中文乱码问题解决总结

MySQL之InnoDB存储引擎中的索引用法及说明

《MySQL之InnoDB存储引擎中的索引用法及说明》:本文主要介绍MySQL之InnoDB存储引擎中的索引用法及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录1、背景2、准备3、正篇【1】存储用户记录的数据页【2】存储目录项记录的数据页【3】聚簇索引【4】二

mysql中的数据目录用法及说明

《mysql中的数据目录用法及说明》:本文主要介绍mysql中的数据目录用法及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、版本3、数据目录4、总结1、背景安装mysql之后,在安装目录下会有一个data目录,我们创建的数据库、创建的表、插入的

全面解析MySQL索引长度限制问题与解决方案

《全面解析MySQL索引长度限制问题与解决方案》MySQL对索引长度设限是为了保持高效的数据检索性能,这个限制不是MySQL的缺陷,而是数据库设计中的权衡结果,下面我们就来看看如何解决这一问题吧... 目录引言:为什么会有索引键长度问题?一、问题根源深度解析mysql索引长度限制原理实际场景示例二、五大解决

Springboot如何正确使用AOP问题

《Springboot如何正确使用AOP问题》:本文主要介绍Springboot如何正确使用AOP问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录​一、AOP概念二、切点表达式​execution表达式案例三、AOP通知四、springboot中使用AOP导出