Basemap地图绘制_Python数据分析与可视化

2023-12-03 08:44

本文主要是介绍Basemap地图绘制_Python数据分析与可视化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Basemap地图绘制

  • 安装和使用
  • 地图投影
  • 地图背景
  • 在地图上画数据

BasemapMatplotlib的一个子包,负责地图绘制。在数据可视化过程中,我们常需要将数据在地图上画出来。

比如说我们在地图上画出城市人口,飞机航线,军事基地,矿藏分布等等。这样的地理绘图有助于读者理解空间相关的信息。适用于有空间位置的数据集。

安装和使用

相对于其他工具Basemap用起来有点笨重,就算做点儿简单的可视化图也需要花费比预期更长的时间。

在处理比较复杂的地图可视化任务时,更现代的解决方案可能会更适用一些,比如leaflet Google Maps API。然而,Basemap 符合Python用户的使用习惯。

basemap并没有集成到matplotlib中,需要我们手动安装,basemap安装起来很简单。

安装命令:

pip install basemap

在这里插入图片描述

安装完并导入basemap工具箱后,只需要用几行代码就可以画出地理图:

import matplotlib.pyplot as plt
from mpl_toolkits.basemap import Basemapplt.figure(figsize=(8, 8))
m = Basemap(projection='ortho', resolution=None, lat_0=50, lon_0=-100)
m.bluemarble(scale=0.5)# 显式设置数据范围
plt.imshow(m.bluemarble(scale=0.5), origin='upper', vmin=0, vmax=1)plt.show()

在这里插入图片描述

下面使用了 mill 投影方式,设置了地图的经纬度范围,绘制了海岸线、国家边界以及经纬度网格,也可以根据需要调整投影方式和绘制的内容

import matplotlib.pyplot as plt
from mpl_toolkits.basemap import Basemap# 创建一个地理图
m = Basemap(projection='mill', llcrnrlat=-60, urcrnrlat=90, llcrnrlon=-180, urcrnrlon=180, resolution='c')# 绘制海岸线和国家边界
m.drawcoastlines()
m.drawcountries()# 绘制经纬度网格
m.drawparallels(range(-90, 91, 30), labels=[1, 0, 0, 0])
m.drawmeridians(range(-180, 181, 60), labels=[0, 0, 0, 1])plt.title("World Map")
plt.show()

在这里插入图片描述

运用Basemap函数我们可以在绘图区域中绘制地理信息相关的图像,当参数 projection的值为'ortho'时,我们将得到一个如上图所示的地球仪截面。
将参数projection的值设置为lcc时,我们可以通过经纬度设置来得到某一区域的局部地图:

fig = plt.figure(figsize=(8, 8))
m = Basemap(projection='lcc', resolution=None,width=8E6,height=8E6,lat_0=45,lon_0=-100)m.etopo(scale=0.5, alpha=0.5)
# 将经纬度映射为 (x, y) 坐标,用于绘制图像
x, y = m(-122.3, 47.6)
plt.plot(x, y, 'ok', markersize=5)
plt.text(x, y, ' Seattle', fontsize=12)

在这里插入图片描述

这里使用了两个额外参数,它们用来表示地图中心的纬度(lat_0)和经度( lon_0)。

地图投影

由于不可能把地表完美反映到二维平面上,所有的地图都是各种各样扭曲的产物,把这些扭曲的产物抹平到平面坐标系的过程,称为投影。

Basemap提供了几十种不同的投影的实现。

投影简写-全称对照:
在这里插入图片描述

下面我们对一常用的投影进行简单的演示。定义一个可以画带经纬线地图的简便方法:

def draw_map(m, scale=0.2):# 画地貌晕渲图m.shadedrelief(scale=scale)# 用字典表示经纬度lats = m.drawparallels(np.linspace(-90, 90, 13))lons = m.drawmeridians(np.linspace(-180, 180, 13))# 字典的键是plt.Line2D示例lat_lines = chain(*(tup[1][0] for tup in lats.items()))lon_lines = chain(*(tup[1][0] for tup in lons.items()))all_lines = chain(lat_lines, lon_lines)# 用循环将所有线设置成需要的样式for line in all_lines:line.set(linestyle='-', alpha=0.3, color='w')

圆柱投影是最简单的地图投影类型,纬度线与经度线分别映射成水平线与竖直线。
采用这种投影类型的话,赤道区域的显示效果非常好,但是南北极附近的区域就会严重变形。

fig = plt.figure(figsize=(8, 6), edgecolor='w')
m = Basemap(projection='cyl', resolution=None,
llcrnrlat=-90, urcrnrlat=90,
llcrnrlon=-180, urcrnrlon=180, )
draw_map(m)

在这里插入图片描述

这里basemap参数设置了左下角(llcrnr)和右上角(urcrnr)纬度(lat)和经度(lon)。不同的投影都有各种的优劣,大家之后可以多多尝试。

地图背景

basemap程序包中有许多实用的函数,可以画出各种地形的轮廓,如陆地、海洋、湖泊、河流、各国的政治分界线。

常用画图函数:
在这里插入图片描述

如果要使用边界特征,就必须设置分辨率。通过resolution来设置分辨率,取值为c(原始分辨率)、l(低分辨率)、i(中分辨率)、h(高分辨率)、f(全画质分辨率)。

来看看两种不同分辨率的绘制效果:

fig, ax = plt.subplots(1, 2, figsize=(12, 8))
for i, res in enumerate(['l', 'h']):m = Basemap(projection='gnom', lat_0=57.3, lon_0=-6.2,width=90000, height=120000, resolution=res, ax=ax[i])m.fillcontinents(color="#FFDDCC", lake_color='#DDEEFF')m.drawmapboundary(fill_color="#DDEEFF")m.drawcoastlines()ax[i].set_title("resolution='{0}'".format(res));
plt.show()

在这里插入图片描述

可以看出低分辨率不适合这个缩放,低分辨率适合呈现全局视角,而且加载速度比高分辨率更快。要呈现某一视角的适合,最好先从一个能快速呈现的分辨率开始,然后不断提高分辨率直到满意为止。

在地图上画数据

basemap还可以以地图为背景,在这上面画各种数据。basemap实例中许多方法都是与地图有关的函数。这些函数与标准matplotlib函数的用法类似,只是多了一个参数latlon。如果设置为true表示使用原来的经纬度坐标,不使用投影(x,y)坐标。

示例如下:

import pandas as pd
cities = pd.read_csv('california_cities.csv')
# 提取我们感兴趣的数据
lat = cities['latd'].values
lon = cities['longd'].values
population = cities['population_total'].values
area = cities['area_total_km2'].values
# 1. 绘制地图背景
fig = plt.figure(figsize=(8, 8))
m = Basemap(projection='lcc', resolution='h', lat_0=37.5, lon_0=-119,width=1E6, height=1.2E6)
m.shadedrelief()
m.drawcoastlines(color='gray')
m.drawcountries(color='gray')
m.drawstates(color='gray')
# 2. 绘制城市数据的散点图,其中颜色反映人口
# 尺寸反映面积
m.scatter(lon, lat, latlon=True,c=np.log10(population), s=area,cmap='Reds', alpha=0.5)
# 3. 创建颜色条和图例
plt.colorbar(label=r'$\log_{10}({\rm population})$')
plt.clim(3, 7)
# 使用虚拟的点生成图例
for a in [100, 300, 500]:plt.scatter([], [], c='k', alpha=0.5, s=a,label=str(a) + ' km$^2$')
plt.legend(scatterpoints=1, frameon=False,labelspacing=1, loc='lower left');

在这里插入图片描述

这篇关于Basemap地图绘制_Python数据分析与可视化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/448819

相关文章

Django开发时如何避免频繁发送短信验证码(python图文代码)

《Django开发时如何避免频繁发送短信验证码(python图文代码)》Django开发时,为防止频繁发送验证码,后端需用Redis限制请求频率,结合管道技术提升效率,通过生产者消费者模式解耦业务逻辑... 目录避免频繁发送 验证码1. www.chinasem.cn避免频繁发送 验证码逻辑分析2. 避免频繁

精选20个好玩又实用的的Python实战项目(有图文代码)

《精选20个好玩又实用的的Python实战项目(有图文代码)》文章介绍了20个实用Python项目,涵盖游戏开发、工具应用、图像处理、机器学习等,使用Tkinter、PIL、OpenCV、Kivy等库... 目录① 猜字游戏② 闹钟③ 骰子模拟器④ 二维码⑤ 语言检测⑥ 加密和解密⑦ URL缩短⑧ 音乐播放

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

Python pandas库自学超详细教程

《Pythonpandas库自学超详细教程》文章介绍了Pandas库的基本功能、安装方法及核心操作,涵盖数据导入(CSV/Excel等)、数据结构(Series、DataFrame)、数据清洗、转换... 目录一、什么是Pandas库(1)、Pandas 应用(2)、Pandas 功能(3)、数据结构二、安

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Python安装Pandas库的两种方法

《Python安装Pandas库的两种方法》本文介绍了三种安装PythonPandas库的方法,通过cmd命令行安装并解决版本冲突,手动下载whl文件安装,更换国内镜像源加速下载,最后建议用pipli... 目录方法一:cmd命令行执行pip install pandas方法二:找到pandas下载库,然后

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

Python进行JSON和Excel文件转换处理指南

《Python进行JSON和Excel文件转换处理指南》在数据交换与系统集成中,JSON与Excel是两种极为常见的数据格式,本文将介绍如何使用Python实现将JSON转换为格式化的Excel文件,... 目录将 jsON 导入为格式化 Excel将 Excel 导出为结构化 JSON处理嵌套 JSON: