编写高质量Python (第26条) 用 functools.wraps 定义函数装饰器

2023-12-03 08:28

本文主要是介绍编写高质量Python (第26条) 用 functools.wraps 定义函数装饰器,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

第26条 用 functools.wraps 定义函数装饰器

​ Python 中有一个特殊写法,可以用装饰器来封装某个函数,从而让函数在执行这个函数之前与执行完这个函数之后,分别运行某些代码。这意味着,调用者传给参数的参数值、函数返回给调用者的值,以及函数抛出的异常,都可以由装饰器访问并修改。这是个很有用 的机制,能够保证用户以正确的方式使用函数,也能用来调试程序或实现函数注册功能,此外还有很多用途。

​ 例如,假设我们要把函数执行时收到的参数与返回的值记录下来。这在调试递归函数是很有用的,因为我们要知道,这个函数执行每一层递归时,输入的是什么参数,返回的是什么值。下面我们就定义这样一个装饰器,在实现这个修饰器时,用 *args 与 **kwargs 表示受修饰的原函数 func 所收到的参数(参见 第22条和第23条)。

def trace(func):def wrapper(*args, **kwargs):result = func(*args, **kwargs)print(f'{func.__name__}({args!r},{kwargs!r})'f' -> {result!r}')return resultreturn wrapper

​ 写好之后,我们用 @ 符号把修饰器运用在想要调试的函数上面。

@trace
def fibonacci(n):"""Return the n-th Fibonacci number """if n in (0, 1):return nreturn (fibonacci(n - 2) + fibonacci(n - 1))

​ 这样写,相当于先把受修饰的函数传给修饰器,然后将修饰器所返回的值赋给原来那个函数。这样的话,如果我们继续通过原来的那个名字调用函数,那么执行的就是修饰之后的函数。

fibonacci = trace(fibonacci)

​ 修饰过的 fibonacci 函数,会在执行自身的代码之前,先执行 wrapper 里位于 func(*args, **kwargs) 那一行之前的逻辑;并且在执行完自身的代码后,执行 wrapper 里位于 func (*args, **kwargs) 那一行之后的逻辑。本例中,它会在执行完自身的代码之后,打印这次执行所用的参数与返回值,这样就能看到整个递归栈的情况了。

fibonacci(4)>>>
fibonacci((0,),{}) -> 0
fibonacci((1,),{}) -> 1
fibonacci((2,),{}) -> 1
fibonacci((1,),{}) -> 1
fibonacci((0,),{}) -> 0
fibonacci((1,),{}) -> 1
fibonacci((2,),{}) -> 1
fibonacci((3,),{}) -> 2
fibonacci((4,),{}) -> 3

​ 这样写确实能满足需求,但是会带来一个我们不愿意看到的副作用。修饰器返回的那个值,也就是刚才调用的 fibonacci ,它的名字并不叫 “fibonacci”。

print(fionacci)>>>
<function trace.<locals>.wrapper at 0x1090ad120>

​ 这种现象解释起来并不困难。trace 函数返回的,是它里面定义的 wrapper 函数,所以,当我们把这个返回值赋给 fibonacci 之后,fibonacci 这个名称所表示的自然就是 wrapper 了。问题在于,这样可能会干扰那些想要利用 introspection 机制来运作的工具,例如调试器(debugger)(参见 第80条)。

​ 例如,如果用内置的 help 函数来查看修饰后的 fibonacci,那么打印出来的并不是我们想看的帮助文档,他本来该打印前面定义时写的那行 'Return the n-th Fibonacci number’文本才对。

help(fabonacci)>>>
Help on function wrapper in module __main__:wrapper(*args, **kwargs)

​ 对象序列化器(object serializer, 参见 第68条) 也无法正常运作,因为它不能确定受修饰函数的位置。

import pickle
pickle.dumps(fibonacci)>>>
Traceback ...
AttributeError: Can't pickle local object 'trace.<locals>.wrapper'

​ 要像解决这些问题,可以改用 functools 内置模块之中的 wraps 辅助函数来实现。wraps 本身也是个修饰器,它可以帮助你编写自己的装饰器。把它运作到 wrapper 函数上面,它就会将重要的元数据 (metadata) 全都从内部函数复制到外部函数。

from functools import wrapsdef trace(func):@wraps(func)def wrapper(*args, **kwargs):result = func(*args, **kwargs)print(f'{func.__name__}({args!r},{kwargs!r})'f' -> {result!r}')return resultreturn wrapper@trace
def fibonacci(n):"""Return the n-th Fibonacci number """if n in (0, 1):return nreturn (fibonacci(n - 2) + fibonacci(n - 1))

​ 现在我们就可以通过 help 函数看到正确的文档了。虽然原来的 fibonacci 函数现在封装在装饰器上,但我们还可以看到它的文档。

help(fibonacci)>>>
Help on function fibonacci in module __main__:fibonacci(n)Return the n-th Fibonacci number

​ 对象序列化,也正常了。

print(pickle.dumps(fibonacci))>>>
b'\x80\x04\x95\x1a\x00\x00\x00\x00\x00\x00\x00\x8c\x08__main__\x94\x8c\tfibonacci\x94\x93\x94.'

​ 除了这里讲到的几个方面之外,Python 函数还有很多属性(例如 __name__,_moudle_,__annotations__)也应该在受到封装时得以保留,这样才能让相关的接口正常运作。wraps 可以帮助保存这些属性,使程序表现出正确的行为。

这篇关于编写高质量Python (第26条) 用 functools.wraps 定义函数装饰器的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/448768

相关文章

基于Linux的ffmpeg python的关键帧抽取

《基于Linux的ffmpegpython的关键帧抽取》本文主要介绍了基于Linux的ffmpegpython的关键帧抽取,实现以按帧或时间间隔抽取关键帧,文中通过示例代码介绍的非常详细,对大家的学... 目录1.FFmpeg的环境配置1) 创建一个虚拟环境envjavascript2) ffmpeg-py

python使用库爬取m3u8文件的示例

《python使用库爬取m3u8文件的示例》本文主要介绍了python使用库爬取m3u8文件的示例,可以使用requests、m3u8、ffmpeg等库,实现获取、解析、下载视频片段并合并等步骤,具有... 目录一、准备工作二、获取m3u8文件内容三、解析m3u8文件四、下载视频片段五、合并视频片段六、错误

Python中提取文件名扩展名的多种方法实现

《Python中提取文件名扩展名的多种方法实现》在Python编程中,经常会遇到需要从文件名中提取扩展名的场景,Python提供了多种方法来实现这一功能,不同方法适用于不同的场景和需求,包括os.pa... 目录技术背景实现步骤方法一:使用os.path.splitext方法二:使用pathlib模块方法三

Python打印对象所有属性和值的方法小结

《Python打印对象所有属性和值的方法小结》在Python开发过程中,调试代码时经常需要查看对象的当前状态,也就是对象的所有属性和对应的值,然而,Python并没有像PHP的print_r那样直接提... 目录python中打印对象所有属性和值的方法实现步骤1. 使用vars()和pprint()2. 使

CSS Anchor Positioning重新定义锚点定位的时代来临(最新推荐)

《CSSAnchorPositioning重新定义锚点定位的时代来临(最新推荐)》CSSAnchorPositioning是一项仍在草案中的新特性,由Chrome125开始提供原生支持需... 目录 css Anchor Positioning:重新定义「锚定定位」的时代来了! 什么是 Anchor Pos

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

一文深入详解Python的secrets模块

《一文深入详解Python的secrets模块》在构建涉及用户身份认证、权限管理、加密通信等系统时,开发者最不能忽视的一个问题就是“安全性”,Python在3.6版本中引入了专门面向安全用途的secr... 目录引言一、背景与动机:为什么需要 secrets 模块?二、secrets 模块的核心功能1. 基

python常见环境管理工具超全解析

《python常见环境管理工具超全解析》在Python开发中,管理多个项目及其依赖项通常是一个挑战,下面:本文主要介绍python常见环境管理工具的相关资料,文中通过代码介绍的非常详细,需要的朋友... 目录1. conda2. pip3. uvuv 工具自动创建和管理环境的特点4. setup.py5.

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安

Python UV安装、升级、卸载详细步骤记录

《PythonUV安装、升级、卸载详细步骤记录》:本文主要介绍PythonUV安装、升级、卸载的详细步骤,uv是Astral推出的下一代Python包与项目管理器,主打单一可执行文件、极致性能... 目录安装检查升级设置自动补全卸载UV 命令总结 官方文档详见:https://docs.astral.sh/