320万开发者在用的飞桨,全新发布推理部署导航图:打通AI应用最后一公里

本文主要是介绍320万开发者在用的飞桨,全新发布推理部署导航图:打通AI应用最后一公里,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在飞桨框架的版本号升级到 2.1 之后,一切都已不一样了。

深度学习框架的行列中,百度飞桨的实力一直让人无法忽视。因此,飞桨也已吸引了大量使用者,构建了无数工业级应用。

「飞桨平台已吸引了超过 320 万开发者,相比一年前增加近 70%,同时其服务的机构达到了 12 万家。飞桨的发展壮大,见证了 AI 工业大生产的如火如荼。」百度首席技术官、深度学习技术及应用国家工程实验室主任王海峰博士,在昨天的 Wave Summit 深度学习开发者峰会上向我们展示了一连串数字。

5 月 20 日下午,Wave Summit 2021 在北京正式举行。在活动中,百度发布了飞桨九大最新发布和全平台升级,这些新技术和工具来自百度源于产业实践的技术、与开发者共生的开源生态,它们正推动着产业智能化加速到来。

 王海峰在 Wave Summit2021 上做开场致辞。

飞桨带来的九大新发布其中包含 6 项技术产品,以及 3 个生态成果和计划。除了为飞桨加入一系列新功能之外,百度还展示了自己在 AI 领域的最新研究成果。

这其中包括:

  • 飞桨开源框架 2.1 版
  • 云原生机器学习核心 PaddleFlow
  • 全新推理部署导航图
  • 全新大规模图检索引擎
  • 开源文心 ERNIE 四大预训练模型
  • 硬件生态大范围覆盖
  • 飞桨「大航海」计划
  • ……

作为「人工智能时代的操作系统」,飞桨连接了智能芯片的算力与大量基础应用,让最先进 AI 算法的大规模应用成为可能。

飞桨框架 2.1:开发体验太妙了

借助飞桨,数百万开发者已不再需要从头开始编写 AI 算法的代码,即可高效进行技术创新并应用于业务。机器学习门槛的大幅降低,加快了人工智能应用的多样化和规模化。在这背后,百度的 AI 技术经历了长时间的发展。

百度早在 2013 年就成立了深度学习研究院,2016 年 8 月,它率先开源了深度学习框架 PaddlePaddle(飞桨),打造了中国首个自主研发、功能完备、开源开放的产业级深度学习平台。随着这一体系的不断改进,飞桨吸引了数百万开发者。

今年 3 月,飞桨迎来了发展历程中的一个里程碑:2.0 正式版的发布。对于飞桨平台来说,这是一次向智能化「基础设施」进化的全面换代。除了成熟的动态图模式,其在 API 系统、大规模模型训练、软硬件一体化等方面均有大量革新。

5 月 20 日的 Wave Summit 上,飞桨开源框架正式升级到 2.1 版本。百度深度学习技术平台部高级总监马艳军带来了关于飞桨开源的最新进展和发布。
 

飞桨技术升级

飞桨新版本首先提升的是训练速度。飞桨开源框架 V2.1 着重优化了自动混合精度训练,最大化地使用 FP16 计算,减少与 FP32 的转换开销,并使用了多种策略自动保证模型正常收敛。此外,飞桨开源框架 V2.1 还优化了大量 FP16 算子的性能,在多个领域的主流模型上都有明显的性能提升。

以 ResNet50 和 BERT 为例,启动自动混合精度功能后,模型的训练速度可以提升 3 倍,与同类系统相比处于领先水平(超过了 PyTorch 和 TensorFlow)。

其次,飞桨框架 2.1 版本的动态图功能进一步增强,新增了 inplace 操作功能,实现了自动显存复用,可将显存占用降低 17.7%。此外还优化了 Python/C++ 交互的开销,提升即时执行效率,使得训练速度提升 11%。

在飞桨框架 2.0 版本正式推出的高层 API,这一次也进行了升级,增强了数据预处理类 API,扩展了基于 GPU 设备的计算能力,此外在全流程训练上增加了混合精度策略支持。2.1 版本还新增了模型共享机制,高层 API 可以直接调用飞桨官方算法库中的经典的、复用性高的模型。

这篇关于320万开发者在用的飞桨,全新发布推理部署导航图:打通AI应用最后一公里的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/448520

相关文章

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

使用IDEA部署Docker应用指南分享

《使用IDEA部署Docker应用指南分享》本文介绍了使用IDEA部署Docker应用的四步流程:创建Dockerfile、配置IDEADocker连接、设置运行调试环境、构建运行镜像,并强调需准备本... 目录一、创建 dockerfile 配置文件二、配置 IDEA 的 Docker 连接三、配置 Do

深入浅出SpringBoot WebSocket构建实时应用全面指南

《深入浅出SpringBootWebSocket构建实时应用全面指南》WebSocket是一种在单个TCP连接上进行全双工通信的协议,这篇文章主要为大家详细介绍了SpringBoot如何集成WebS... 目录前言为什么需要 WebSocketWebSocket 是什么Spring Boot 如何简化 We

Java Stream流之GroupBy的用法及应用场景

《JavaStream流之GroupBy的用法及应用场景》本教程将详细介绍如何在Java中使用Stream流的groupby方法,包括基本用法和一些常见的实际应用场景,感兴趣的朋友一起看看吧... 目录Java Stream流之GroupBy的用法1. 前言2. 基础概念什么是 GroupBy?Stream

python中列表应用和扩展性实用详解

《python中列表应用和扩展性实用详解》文章介绍了Python列表的核心特性:有序数据集合,用[]定义,元素类型可不同,支持迭代、循环、切片,可执行增删改查、排序、推导式及嵌套操作,是常用的数据处理... 目录1、列表定义2、格式3、列表是可迭代对象4、列表的常见操作总结1、列表定义是处理一组有序项目的

C#中的Converter的具体应用

《C#中的Converter的具体应用》C#中的Converter提供了一种灵活的类型转换机制,本文详细介绍了Converter的基本概念、使用场景,具有一定的参考价值,感兴趣的可以了解一下... 目录Converter的基本概念1. Converter委托2. 使用场景布尔型转换示例示例1:简单的字符串到

Spring AI使用tool Calling和MCP的示例详解

《SpringAI使用toolCalling和MCP的示例详解》SpringAI1.0.0.M6引入ToolCalling与MCP协议,提升AI与工具交互的扩展性与标准化,支持信息检索、行动执行等... 目录深入探索 Spring AI聊天接口示例Function CallingMCPSTDIOSSE结束语

Spring Boot Actuator应用监控与管理的详细步骤

《SpringBootActuator应用监控与管理的详细步骤》SpringBootActuator是SpringBoot的监控工具,提供健康检查、性能指标、日志管理等核心功能,支持自定义和扩展端... 目录一、 Spring Boot Actuator 概述二、 集成 Spring Boot Actuat

PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例

《PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例》词嵌入解决NLP维度灾难,捕捉语义关系,PyTorch的nn.Embedding模块提供灵活实现,支持参数配置、预训练及变长... 目录一、词嵌入(Word Embedding)简介为什么需要词嵌入?二、PyTorch中的nn.Em

Spring Boot3.0新特性全面解析与应用实战

《SpringBoot3.0新特性全面解析与应用实战》SpringBoot3.0作为Spring生态系统的一个重要里程碑,带来了众多令人兴奋的新特性和改进,本文将深入解析SpringBoot3.0的... 目录核心变化概览Java版本要求提升迁移至Jakarta EE重要新特性详解1. Native Ima