混沌系统在图像加密中的应用(基于哈密顿能量函数的混沌系统构造1.5)

2023-12-02 22:20

本文主要是介绍混沌系统在图像加密中的应用(基于哈密顿能量函数的混沌系统构造1.5),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

混沌系统在图像加密中的应用(基于哈密顿能量函数的混沌系统构造1.5)

  • 前言
  • 一、自治非哈密顿系统的构造、动态特性分析
    • 1.相关理论基础
    • 2.两个四维自治非哈密顿系统
    • 3.数值分析
  • python代码

前言

续接混沌系统在图像加密中的应用(基于哈密顿能量函数的混沌系统构造1.4)

一、自治非哈密顿系统的构造、动态特性分析

1.相关理论基础

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2.两个四维自治非哈密顿系统

本节的主要贡献是提出具有如下特点的两个新四维自治非线性联系系统:
第一,提出的系统都是非哈密顿能量保守系统。这可由存在的哈密顿能量函 数与李雅普诺夫指数和为零来说明。
第二,其中一个系统不存在逆时间对称性。
第三,提出的系统都存在两种类型的曲线平衡点。
第四,系统中存在的拟周期运动和混沌运动存在于一个超球面上。
通常一个四维非线性动力学系统可用如下一阶微分方程组来表示:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3.数值分析

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

python代码

import numpy as np
from scipy.integrate import odeint
import matplotlib.pylab as mpl
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
mpl.rcParams['font.sans-serif'] = ['Times new roman']  # 指定默认字体
mpl.rcParams['axes.unicode_minus'] = False  # 解决保存图像是负号'-'显示为方块的问题def dmove(Point, t, sets):a, b = setsx, y, z, w = Pointreturn np.array([a * y * w,x * z,-x * y + b * w,-a * x * y - b * z])t = np.arange(0, 200, 0.01)  # 时间序列 总共有 100/0.01=10000 个点
par_a = 2
par_b = 2par = [par_a, par_b]
P = odeint(dmove, (1, -1, 1, -1), t, args=(par,))plt.figure()
plt.plot(P[:, 0], lw=2)
plt.plot(P[:, 1], lw=2)
plt.plot(P[:, 2], lw=2)
plt.xlabel("t", fontsize=15)
plt.ylabel("x,y,z", fontsize=15)plt.figure()
plt.plot(P[:, 0], P[:, 1], lw=1.5, c="b")
plt.xlabel("x", fontsize=12)
plt.ylabel("y", fontsize=12)
plt.figure()
plt.plot(P[:, 0], P[:, 2], lw=1.5, c="b")
plt.xlabel("x", fontsize=12)
plt.ylabel("z", fontsize=12)
plt.figure()
plt.plot(P[:, 2], P[:, 3], lw=1.5, c="b")
plt.xlabel("z", fontsize=12)
plt.ylabel("w", fontsize=12)
plt.show()

这篇关于混沌系统在图像加密中的应用(基于哈密顿能量函数的混沌系统构造1.5)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/447044

相关文章

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

PHP应用中处理限流和API节流的最佳实践

《PHP应用中处理限流和API节流的最佳实践》限流和API节流对于确保Web应用程序的可靠性、安全性和可扩展性至关重要,本文将详细介绍PHP应用中处理限流和API节流的最佳实践,下面就来和小编一起学习... 目录限流的重要性在 php 中实施限流的最佳实践使用集中式存储进行状态管理(如 Redis)采用滑动

深入浅出Spring中的@Autowired自动注入的工作原理及实践应用

《深入浅出Spring中的@Autowired自动注入的工作原理及实践应用》在Spring框架的学习旅程中,@Autowired无疑是一个高频出现却又让初学者头疼的注解,它看似简单,却蕴含着Sprin... 目录深入浅出Spring中的@Autowired:自动注入的奥秘什么是依赖注入?@Autowired

JWT + 拦截器实现无状态登录系统

《JWT+拦截器实现无状态登录系统》JWT(JSONWebToken)提供了一种无状态的解决方案:用户登录后,服务器返回一个Token,后续请求携带该Token即可完成身份验证,无需服务器存储会话... 目录✅ 引言 一、JWT 是什么? 二、技术选型 三、项目结构 四、核心代码实现4.1 添加依赖(pom

GO语言中函数命名返回值的使用

《GO语言中函数命名返回值的使用》在Go语言中,函数可以为其返回值指定名称,这被称为命名返回值或命名返回参数,这种特性可以使代码更清晰,特别是在返回多个值时,感兴趣的可以了解一下... 目录基本语法函数命名返回特点代码示例命名特点基本语法func functionName(parameters) (nam

基于Python实现自动化邮件发送系统的完整指南

《基于Python实现自动化邮件发送系统的完整指南》在现代软件开发和自动化流程中,邮件通知是一个常见且实用的功能,无论是用于发送报告、告警信息还是用户提醒,通过Python实现自动化的邮件发送功能都能... 目录一、前言:二、项目概述三、配置文件 `.env` 解析四、代码结构解析1. 导入模块2. 加载环

linux系统上安装JDK8全过程

《linux系统上安装JDK8全过程》文章介绍安装JDK的必要性及Linux下JDK8的安装步骤,包括卸载旧版本、下载解压、配置环境变量等,强调开发需JDK,运行可选JRE,现JDK已集成JRE... 目录为什么要安装jdk?1.查看linux系统是否有自带的jdk:2.下载jdk压缩包2.解压3.配置环境

Python Counter 函数使用案例

《PythonCounter函数使用案例》Counter是collections模块中的一个类,专门用于对可迭代对象中的元素进行计数,接下来通过本文给大家介绍PythonCounter函数使用案例... 目录一、Counter函数概述二、基本使用案例(一)列表元素计数(二)字符串字符计数(三)元组计数三、C

PostgreSQL简介及实战应用

《PostgreSQL简介及实战应用》PostgreSQL是一种功能强大的开源关系型数据库管理系统,以其稳定性、高性能、扩展性和复杂查询能力在众多项目中得到广泛应用,本文将从基础概念讲起,逐步深入到高... 目录前言1. PostgreSQL基础1.1 PostgreSQL简介1.2 基础语法1.3 数据库

Python中的filter() 函数的工作原理及应用技巧

《Python中的filter()函数的工作原理及应用技巧》Python的filter()函数用于筛选序列元素,返回迭代器,适合函数式编程,相比列表推导式,内存更优,尤其适用于大数据集,结合lamb... 目录前言一、基本概念基本语法二、使用方式1. 使用 lambda 函数2. 使用普通函数3. 使用 N