GA在一般线性或非线性规划问题中的应用

2023-12-02 17:30

本文主要是介绍GA在一般线性或非线性规划问题中的应用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

GA in LINEAR programming problem

  • 综述
  • 问题叙述
    • 背景
    • 分析
    • 优化目标
  • 模型建立
  • 模型求解
  • 代码
  • 结论与分析
    • 一起进步呀

综述

本文在进入正题前,加入了数学建模的方法作为说明铺垫,虽然简单但是是个很好示例。
首先说明,在求解线性与非线性问题时lingo软件是一个很好的选择。当然,如果能用遗传算法求解,在保证其算法和代码的正确性的前提下,选择该方法也是一个不二之选。读者会其他更好的优化软件,也可以权当了解拓展视野;对于笔者,也是一个拓展提高的机会。

问题叙述

背景

背景:结合市场行情和实践的背景情况,我们对可能的风险进行讨论。国家推出促进小资企业的创新创业政策,可以说政策风险很小,甚至说经济政策甚至是一个优势,所以我们不予考虑;之后在忽略去财务风险之后,我们综合考虑的风险有以下五种:行业风险、技术开发风险、经营管理风险、市场开拓风险、生产风险。

分析

分析:对于风险的控制,我们不能都做到减小,只能说是相对当前所面对的情形下的最低风险,即转化为一个规划问题的最优解。但是在进行求解风险时,应对着重处理影响力最大的风险,即是占比风险权重最大的一些部分。综上所述,我们先通过进行求解各风险在问题中的占比权重,然后通过风险最小和利益最大的线性或非线性规划问题,进行求解最好的投资方式,从而对风险进行控制。因为所给的风险种类小,用层次分析法进行求解简单而准确;之后再通过解规划模型得出实际情况下的最优风险控制方案。

优化目标

优化目标:在风险最小的情况下获得做大利润。我们都知道,风险越高获益越大,显然这是一个矛盾性的问题。接下来我们用数学语言对其进行描述:

模型建立

在这里插入图片描述
在这里插入图片描述

模型求解

  在不失一般性的前提下,我们假定我们的资本是1w元。五种风险分别命名为甲、乙、丙、丁、戊,在权重确定
后得到获利权重向量w=(3.8,1.5,2.6,0.7,1.4),其中X=(x1,x2,x3,x4,x5),总收益为w*X’。而损失的权重向量为l=(-2.9,-0.21,-1.52,-0.33,-2.0),总损失为l*X’。但是风险的产生是以概率存在的,
我们设这个概率向量p=(0.5,0.05,0.15,0.1,0.2)。

下面是对遗传算法解决问题的概述和流程图
初始种群:初始种群大小为20,这里的基因型采用以分量和为1的向量来表示,而不是采用二进制。迭代次数为100,变异概率0.1,交叉概率0.9,选择时采用轮盘赌进行选择。适应度函数即为模型中的目标函数。
交叉:从种群中随机选取2个样本作为父代,进行交叉。
选择:选择适应度大的个体得以保存下来。
变异:在概率较小的情况下,对基因型进行值的改变,稀释其他未变异基因比重,得到新的个体。
迭代:如此循环往复进行迭代100次,最终得出较优的解。
在这里插入图片描述
图1 流程示意图

代码

完整代码大家可以参考我的网址
https://download.csdn.net/download/wlfyok/12604709

% 下面是对于初始条件的设定
gen = 10000;
cp = 0.9;    % crossoverpossibility
mp = 0.1;    % mutatepossibility
popsize = 20;
pop = zeros(20,5);% 种群初始化
for i = 1:20pop(i,:) = rand(1,5);pop(i,:) = normalize(pop(i,:));
end% 保留每次最高值,以便后续画图
maxvalue = zeros(100,1);% GA算法
for k = 1:gen% 计算初始种群的适应度值for i = 1:20value(i) = fitness999(pop(i,:));end% 轮盘赌选择sizement = 4;for i = 1:sizementparent(i,:) = pop(randi(20),:); endfor i = 1:sizementresult(i) = fitness999(parent(i,:));endmost = 1;for i = 1:sizementif result(i) > result(most)most = i;endendfor m = 1:20if result(most) == value(m)local1 = m;endendparent1 = parent(most,:);for i = 1:sizementparent(i,:) = pop(randi(20),:); endfor i = 1:sizementresult(i) = fitness999(parent(i,:));endmost = 1;for i = 1:sizementif result(i) > result(most)most = i;endendfor n = 1:20if result(most) == value(n)local1 = n;endendparent2 = parent(most,:);[offspring1,offspring2] = crossover999(parent1,parent2);pop(local1,:) = offspring1;pop(local2,:) = offspring2;            % 交叉num = randperm(20,1);pop(num,:) = mutate999(pop(num,:));    % 变异% 计算当前种群的适应度,并记录for j = 1:20value(j) = fitness999(pop(j,:));endmaxvalue(k) = max(value);
end
plot(maxvalue)

完整代码大家可以参考我的网址
https://download.csdn.net/download/wlfyok/12604709

结论与分析

笔者一开始以为迭代100次就能得到结果,但不尽如人意,当笔者尝试到10000次时,发现结果收敛了,当然每次运行的结果可能不太一样,但大多类似于此图的情况,所以就把它当作结果图了。当然了,算法的设计上可能有一些问题,因为迭代的次数太多,而且出现不收敛的情况也不是太少,或许这个问题本来就没有一个收敛的值,当然我们不去讨论这种情况。
实验结果表面,最终的结果表明,我们的收益是0.6*10e5,说明这个项目是盈利的,在其他情况不变的情况下,带入此种情况的投资占比,即可得到我们的最大收益了。
在这里插入图片描述

一起进步呀

如果大家对觉得笔者写的文章有什么不清楚的地方,欢迎在评论区指出。
再者,如果大家有想要讨论相关的问题也可以在评论区留言或私信。
如果有需要智能算法求解的问题,也可以发给笔者,笔者可以试试,和大家一起讨论学习。
最后,如果大家觉得还行的话,点一个赞赞再走呗,笔芯!
在这里插入图片描述

这篇关于GA在一般线性或非线性规划问题中的应用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/446194

相关文章

MySQL主从同步延迟问题的全面解决方案

《MySQL主从同步延迟问题的全面解决方案》MySQL主从同步延迟是分布式数据库系统中的常见问题,会导致从库读取到过期数据,影响业务一致性,下面我将深入分析延迟原因并提供多层次的解决方案,需要的朋友可... 目录一、同步延迟原因深度分析1.1 主从复制原理回顾1.2 延迟产生的关键环节二、实时监控与诊断方案

SpringBoot中四种AOP实战应用场景及代码实现

《SpringBoot中四种AOP实战应用场景及代码实现》面向切面编程(AOP)是Spring框架的核心功能之一,它通过预编译和运行期动态代理实现程序功能的统一维护,在SpringBoot应用中,AO... 目录引言场景一:日志记录与性能监控业务需求实现方案使用示例扩展:MDC实现请求跟踪场景二:权限控制与

SQLyog中DELIMITER执行存储过程时出现前置缩进问题的解决方法

《SQLyog中DELIMITER执行存储过程时出现前置缩进问题的解决方法》在SQLyog中执行存储过程时出现的前置缩进问题,实际上反映了SQLyog对SQL语句解析的一个特殊行为,本文给大家介绍了详... 目录问题根源正确写法示例永久解决方案为什么命令行不受影响?最佳实践建议问题根源SQLyog的语句分

解决IDEA报错:编码GBK的不可映射字符问题

《解决IDEA报错:编码GBK的不可映射字符问题》:本文主要介绍解决IDEA报错:编码GBK的不可映射字符问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录IDEA报错:编码GBK的不可映射字符终端软件问题描述原因分析解决方案方法1:将命令改为方法2:右下jav

MyBatis模糊查询报错:ParserException: not supported.pos 问题解决

《MyBatis模糊查询报错:ParserException:notsupported.pos问题解决》本文主要介绍了MyBatis模糊查询报错:ParserException:notsuppo... 目录问题描述问题根源错误SQL解析逻辑深层原因分析三种解决方案方案一:使用CONCAT函数(推荐)方案二:

Redis 热 key 和大 key 问题小结

《Redis热key和大key问题小结》:本文主要介绍Redis热key和大key问题小结,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、什么是 Redis 热 key?热 key(Hot Key)定义: 热 key 常见表现:热 key 的风险:二、

IntelliJ IDEA 中配置 Spring MVC 环境的详细步骤及问题解决

《IntelliJIDEA中配置SpringMVC环境的详细步骤及问题解决》:本文主要介绍IntelliJIDEA中配置SpringMVC环境的详细步骤及问题解决,本文分步骤结合实例给大... 目录步骤 1:创建 Maven Web 项目步骤 2:添加 Spring MVC 依赖1、保存后执行2、将新的依赖

Spring 中的循环引用问题解决方法

《Spring中的循环引用问题解决方法》:本文主要介绍Spring中的循环引用问题解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录什么是循环引用?循环依赖三级缓存解决循环依赖二级缓存三级缓存本章来聊聊Spring 中的循环引用问题该如何解决。这里聊

Spring Boot中JSON数值溢出问题从报错到优雅解决办法

《SpringBoot中JSON数值溢出问题从报错到优雅解决办法》:本文主要介绍SpringBoot中JSON数值溢出问题从报错到优雅的解决办法,通过修改字段类型为Long、添加全局异常处理和... 目录一、问题背景:为什么我的接口突然报错了?二、为什么会发生这个错误?1. Java 数据类型的“容量”限制

C语言中位操作的实际应用举例

《C语言中位操作的实际应用举例》:本文主要介绍C语言中位操作的实际应用,总结了位操作的使用场景,并指出了需要注意的问题,如可读性、平台依赖性和溢出风险,文中通过代码介绍的非常详细,需要的朋友可以参... 目录1. 嵌入式系统与硬件寄存器操作2. 网络协议解析3. 图像处理与颜色编码4. 高效处理布尔标志集合