GA在一般线性或非线性规划问题中的应用

2023-12-02 17:30

本文主要是介绍GA在一般线性或非线性规划问题中的应用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

GA in LINEAR programming problem

  • 综述
  • 问题叙述
    • 背景
    • 分析
    • 优化目标
  • 模型建立
  • 模型求解
  • 代码
  • 结论与分析
    • 一起进步呀

综述

本文在进入正题前,加入了数学建模的方法作为说明铺垫,虽然简单但是是个很好示例。
首先说明,在求解线性与非线性问题时lingo软件是一个很好的选择。当然,如果能用遗传算法求解,在保证其算法和代码的正确性的前提下,选择该方法也是一个不二之选。读者会其他更好的优化软件,也可以权当了解拓展视野;对于笔者,也是一个拓展提高的机会。

问题叙述

背景

背景:结合市场行情和实践的背景情况,我们对可能的风险进行讨论。国家推出促进小资企业的创新创业政策,可以说政策风险很小,甚至说经济政策甚至是一个优势,所以我们不予考虑;之后在忽略去财务风险之后,我们综合考虑的风险有以下五种:行业风险、技术开发风险、经营管理风险、市场开拓风险、生产风险。

分析

分析:对于风险的控制,我们不能都做到减小,只能说是相对当前所面对的情形下的最低风险,即转化为一个规划问题的最优解。但是在进行求解风险时,应对着重处理影响力最大的风险,即是占比风险权重最大的一些部分。综上所述,我们先通过进行求解各风险在问题中的占比权重,然后通过风险最小和利益最大的线性或非线性规划问题,进行求解最好的投资方式,从而对风险进行控制。因为所给的风险种类小,用层次分析法进行求解简单而准确;之后再通过解规划模型得出实际情况下的最优风险控制方案。

优化目标

优化目标:在风险最小的情况下获得做大利润。我们都知道,风险越高获益越大,显然这是一个矛盾性的问题。接下来我们用数学语言对其进行描述:

模型建立

在这里插入图片描述
在这里插入图片描述

模型求解

  在不失一般性的前提下,我们假定我们的资本是1w元。五种风险分别命名为甲、乙、丙、丁、戊,在权重确定
后得到获利权重向量w=(3.8,1.5,2.6,0.7,1.4),其中X=(x1,x2,x3,x4,x5),总收益为w*X’。而损失的权重向量为l=(-2.9,-0.21,-1.52,-0.33,-2.0),总损失为l*X’。但是风险的产生是以概率存在的,
我们设这个概率向量p=(0.5,0.05,0.15,0.1,0.2)。

下面是对遗传算法解决问题的概述和流程图
初始种群:初始种群大小为20,这里的基因型采用以分量和为1的向量来表示,而不是采用二进制。迭代次数为100,变异概率0.1,交叉概率0.9,选择时采用轮盘赌进行选择。适应度函数即为模型中的目标函数。
交叉:从种群中随机选取2个样本作为父代,进行交叉。
选择:选择适应度大的个体得以保存下来。
变异:在概率较小的情况下,对基因型进行值的改变,稀释其他未变异基因比重,得到新的个体。
迭代:如此循环往复进行迭代100次,最终得出较优的解。
在这里插入图片描述
图1 流程示意图

代码

完整代码大家可以参考我的网址
https://download.csdn.net/download/wlfyok/12604709

% 下面是对于初始条件的设定
gen = 10000;
cp = 0.9;    % crossoverpossibility
mp = 0.1;    % mutatepossibility
popsize = 20;
pop = zeros(20,5);% 种群初始化
for i = 1:20pop(i,:) = rand(1,5);pop(i,:) = normalize(pop(i,:));
end% 保留每次最高值,以便后续画图
maxvalue = zeros(100,1);% GA算法
for k = 1:gen% 计算初始种群的适应度值for i = 1:20value(i) = fitness999(pop(i,:));end% 轮盘赌选择sizement = 4;for i = 1:sizementparent(i,:) = pop(randi(20),:); endfor i = 1:sizementresult(i) = fitness999(parent(i,:));endmost = 1;for i = 1:sizementif result(i) > result(most)most = i;endendfor m = 1:20if result(most) == value(m)local1 = m;endendparent1 = parent(most,:);for i = 1:sizementparent(i,:) = pop(randi(20),:); endfor i = 1:sizementresult(i) = fitness999(parent(i,:));endmost = 1;for i = 1:sizementif result(i) > result(most)most = i;endendfor n = 1:20if result(most) == value(n)local1 = n;endendparent2 = parent(most,:);[offspring1,offspring2] = crossover999(parent1,parent2);pop(local1,:) = offspring1;pop(local2,:) = offspring2;            % 交叉num = randperm(20,1);pop(num,:) = mutate999(pop(num,:));    % 变异% 计算当前种群的适应度,并记录for j = 1:20value(j) = fitness999(pop(j,:));endmaxvalue(k) = max(value);
end
plot(maxvalue)

完整代码大家可以参考我的网址
https://download.csdn.net/download/wlfyok/12604709

结论与分析

笔者一开始以为迭代100次就能得到结果,但不尽如人意,当笔者尝试到10000次时,发现结果收敛了,当然每次运行的结果可能不太一样,但大多类似于此图的情况,所以就把它当作结果图了。当然了,算法的设计上可能有一些问题,因为迭代的次数太多,而且出现不收敛的情况也不是太少,或许这个问题本来就没有一个收敛的值,当然我们不去讨论这种情况。
实验结果表面,最终的结果表明,我们的收益是0.6*10e5,说明这个项目是盈利的,在其他情况不变的情况下,带入此种情况的投资占比,即可得到我们的最大收益了。
在这里插入图片描述

一起进步呀

如果大家对觉得笔者写的文章有什么不清楚的地方,欢迎在评论区指出。
再者,如果大家有想要讨论相关的问题也可以在评论区留言或私信。
如果有需要智能算法求解的问题,也可以发给笔者,笔者可以试试,和大家一起讨论学习。
最后,如果大家觉得还行的话,点一个赞赞再走呗,笔芯!
在这里插入图片描述

这篇关于GA在一般线性或非线性规划问题中的应用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/446194

相关文章

从基础到高阶详解Python多态实战应用指南

《从基础到高阶详解Python多态实战应用指南》这篇文章主要从基础到高阶为大家详细介绍Python中多态的相关应用与技巧,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、多态的本质:python的“鸭子类型”哲学二、多态的三大实战场景场景1:数据处理管道——统一处理不同数据格式

Linux部署中的文件大小写问题的解决方案

《Linux部署中的文件大小写问题的解决方案》在本地开发环境(Windows/macOS)一切正常,但部署到Linux服务器后出现模块加载错误,核心原因是Linux文件系统严格区分大小写,所以本文给大... 目录问题背景解决方案配置要求问题背景在本地开发环境(Windows/MACOS)一切正常,但部署到

MySQL磁盘空间不足问题解决

《MySQL磁盘空间不足问题解决》本文介绍查看空间使用情况的方式,以及各种空间问题的原因和解决方案,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习吧... 目录查看空间使用情况Binlog日志文件占用过多表上的索引太多导致空间不足大字段导致空间不足表空间碎片太多导致空间不足临时表空间

Mybatis-Plus 3.5.12 分页拦截器消失的问题及快速解决方法

《Mybatis-Plus3.5.12分页拦截器消失的问题及快速解决方法》作为Java开发者,我们都爱用Mybatis-Plus简化CRUD操作,尤其是它的分页功能,几行代码就能搞定复杂的分页查询... 目录一、问题场景:分页拦截器突然 “失踪”二、问题根源:依赖拆分惹的祸三、解决办法:添加扩展依赖四、分页

Java中InputStream重复使用问题的几种解决方案

《Java中InputStream重复使用问题的几种解决方案》在Java开发中,InputStream是用于读取字节流的类,在许多场景下,我们可能需要重复读取InputStream中的数据,这篇文章主... 目录前言1. 使用mark()和reset()方法(适用于支持标记的流)2. 将流内容缓存到字节数组

解决若依微服务框架启动报错的问题

《解决若依微服务框架启动报错的问题》Invalidboundstatement错误通常由MyBatis映射文件未正确加载或Nacos配置未读取导致,需检查XML的namespace与方法ID是否匹配,... 目录ruoyi-system模块报错报错详情nacos文件目录总结ruoyi-systnGLNYpe

解决Failed to get nested archive for entry BOOT-INF/lib/xxx.jar问题

《解决FailedtogetnestedarchiveforentryBOOT-INF/lib/xxx.jar问题》解决BOOT-INF/lib/xxx.jar替换异常需确保路径正确:解... 目录Failed to get nested archive for entry BOOT-INF/lib/xxx

解决hive启动时java.net.ConnectException:拒绝连接的问题

《解决hive启动时java.net.ConnectException:拒绝连接的问题》Hadoop集群连接被拒,需检查集群是否启动、关闭防火墙/SELinux、确认安全模式退出,若问题仍存,查看日志... 目录错误发生原因解决方式1.关闭防火墙2.关闭selinux3.启动集群4.检查集群是否正常启动5.

idea Maven Springboot多模块项目打包时90%的问题及解决方案

《ideaMavenSpringboot多模块项目打包时90%的问题及解决方案》:本文主要介绍ideaMavenSpringboot多模块项目打包时90%的问题及解决方案,具有很好的参考价值,... 目录1. 前言2. 问题3. 解决办法4. jar 包冲突总结1. 前言之所以写这篇文章是因为在使用Mav

Java Stream 的 Collectors.toMap高级应用与最佳实践

《JavaStream的Collectors.toMap高级应用与最佳实践》文章讲解JavaStreamAPI中Collectors.toMap的使用,涵盖基础语法、键冲突处理、自定义Map... 目录一、基础用法回顾二、处理键冲突三、自定义 Map 实现类型四、处理 null 值五、复杂值类型转换六、处理