数字图像处理(实践篇)十七 Shi-Tomasi 角点检测

2023-12-02 17:04

本文主要是介绍数字图像处理(实践篇)十七 Shi-Tomasi 角点检测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

一 涉及的函数

二 实践


在使用OpenCV之前,需要先安装相关的库和依赖项,命令如下所示:

# 安装OpenCV的基础版pip install opencv-python# 安装OpenCV的扩展版pip install opencv-contrib-python

一 涉及的函数

OpenCV 提供了cv2.goodFeaturesToTrack()函数,来获取图像中前 N 个最好的角点。

cv2.goodFeaturesToTrack()函数的原型如下所示

corners=cv.goodFeaturesToTrack(image, maxCorners, qualityLevel, minDistance[, corners[, mask[, blockSize[, useHarrisDetector[, k]]]]])

输入:

image:输入灰度图像,float32类型。

maxCorners:返回角点的最大数目。

注意:值为0表示没有设置最大值限制,返回所有检测到的角点。

qualityLevel:表示可接受角点的最低质量水平。

minDistance:角点之间最小欧式距离,忽略小于这个距离的角点。

mask:可选的感兴趣区域,指定想要检测角点的区域。

blockSize:角点检测的邻域大小。

useHarrisDetector:选择是否采用Harris角点检测,默认是false.值为false的时候,使用的是Shi Tomasi算法

k:Harris角点检测时使用的参数。

返回:

corners输出为角点坐标。

二 实践

  • 代码
import numpy as np
import cv2
import matplotlib.pyplot as plt
def dealImg(img):b, g, r = cv2.split(img)img_rgb = cv2.merge([r, g, b])return img_rgb
def dealImageResult(img_path):img = cv2.imread(img_path)im1 = img.copy()im2 = img.copy()gray = cv2.cvtColor(im1, cv2.COLOR_BGR2GRAY)# 返回的最大角点数是40,最低质量水平为0.01,角点之间最小欧式距离为10,useHarrisDetector为默认值false,使用的是Shi-Tomasi算法。corners = cv2.goodFeaturesToTrack(gray, 40, 0.01, 10)corners = np.intp(corners)for i in corners:x, y = i.ravel()cv2.circle(im1, (x, y), 3, (255, 255, 0), -1)# 返回的最大角点数是40,最低质量水平为0.01,角点之间最小欧式距离为10,useHarrisDetector为True,使用的是harris算法。corners_harris = cv2.goodFeaturesToTrack(gray, 40, 0.01, 10, useHarrisDetector=True)corners_harris = np.intp(corners_harris)for i in corners_harris:x, y = i.ravel()cv2.circle(im2, (x, y), 3, (255, 255, 0), -1)fig = plt.figure(figsize=(10, 10))img = dealImg(img)im1 = dealImg(im1)im2 = dealImg(im2)titles = ["im", " Shi-Tomasi", "harris"]images = [img, im1, im2]for i in range(3):plt.subplot(1, 3, i + 1), plt.imshow(images[i], "gray")plt.title("{}".format(titles[i]), fontsize=20, ha='center')plt.xticks([]), plt.yticks([])#plt.subplots_adjust(left=None, bottom=None, right=None, top=None, wspace=0.3, hspace=0)# plt.tight_layout()plt.show()fig.savefig('test_results.jpg', bbox_inches='tight')
if __name__ == '__main__':dealImageResult("corner.jpg")pass
  • 效果图

Harris 和 Shi-Tomasi 都是基于梯度计算的角点检测方法。从上图结果中可以看出,Shi-Tomasi 的检测的效果要好一些。但是,基于梯度的检测方法有计算复杂度高等缺点。如果有提高检测速度的需求的话,可以考虑FAST角点检测算法。FAST角点检测算法原理简单,实时性也较强。

前文回顾

 入门篇目录

 数字图像处理(入门篇)一 图像的数字化与表示

 数字图像处理(入门篇)二 颜色空间

 数字图像处理(入门篇)三 灰度化

 数字图像处理(入门篇)四 像素关系

 数字图像处理(入门篇)五 图像数据预处理之颜色空间转换

 数字图像处理(入门篇)六 图像数据预处理之坐标变化

 数字图像处理(入门篇)七 图像数据预处理之灰度变化

 数字图像处理(入门篇)八 图像数据预处理之直方图

 数字图像处理(入门篇)九 图像数据预处理之滤波

 数字图像处理(入门篇)十 边缘检测

 数字图像处理(入门篇)十一 形态学处理

 数字图像处理(入门篇)十二 自适应阈值分割

 数字图像处理(入门篇)十三 仿射变换

 数字图像处理(入门篇)十四 透视变换

实践篇目录

数字图像处理(实践篇)一 将图像中的指定目标用bBox框起来吧!

数字图像处理(实践篇)二 画出图像中目标的轮廓

数字图像处理(实践篇)三 将两张图像按照指定比例融合

数字图像处理(实践篇)四 图像拼接-基于SIFT特征点和RANSAC方法

数字图像处理(实践篇)五 使用Grabcut算法进行物体分割

数字图像处理(实践篇)六 利用hough变换进行直线检测

数字图像处理(实践篇)七 利用霍夫变换进行圆环检测

数字图像处理(实践篇)八 Harris角点检测

数字图像处理(实践篇)九 基于边缘的模板匹配

数字图像处理(实践篇)十 图像质量检测

数字图像处理(实践篇)十一 图像中的条形码解析

数字图像处理(实践篇)十二 基于小波变换的图像降噪

数字图像处理(实践篇)十三 数据增强之给图像添加噪声!

数字图像处理(实践篇)十四 图像金字塔

数字图像处理(实践篇)十五 基于傅里叶变换的高通滤波和低通滤波

数字图像处理(实践篇)十六 基于分水岭算法的图像分割
 

这篇关于数字图像处理(实践篇)十七 Shi-Tomasi 角点检测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/446130

相关文章

防止Linux rm命令误操作的多场景防护方案与实践

《防止Linuxrm命令误操作的多场景防护方案与实践》在Linux系统中,rm命令是删除文件和目录的高效工具,但一旦误操作,如执行rm-rf/或rm-rf/*,极易导致系统数据灾难,本文针对不同场景... 目录引言理解 rm 命令及误操作风险rm 命令基础常见误操作案例防护方案使用 rm编程 别名及安全删除

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

PHP应用中处理限流和API节流的最佳实践

《PHP应用中处理限流和API节流的最佳实践》限流和API节流对于确保Web应用程序的可靠性、安全性和可扩展性至关重要,本文将详细介绍PHP应用中处理限流和API节流的最佳实践,下面就来和小编一起学习... 目录限流的重要性在 php 中实施限流的最佳实践使用集中式存储进行状态管理(如 Redis)采用滑动

ShardingProxy读写分离之原理、配置与实践过程

《ShardingProxy读写分离之原理、配置与实践过程》ShardingProxy是ApacheShardingSphere的数据库中间件,通过三层架构实现读写分离,解决高并发场景下数据库性能瓶... 目录一、ShardingProxy技术定位与读写分离核心价值1.1 技术定位1.2 读写分离核心价值二

深入浅出Spring中的@Autowired自动注入的工作原理及实践应用

《深入浅出Spring中的@Autowired自动注入的工作原理及实践应用》在Spring框架的学习旅程中,@Autowired无疑是一个高频出现却又让初学者头疼的注解,它看似简单,却蕴含着Sprin... 目录深入浅出Spring中的@Autowired:自动注入的奥秘什么是依赖注入?@Autowired

MySQL分库分表的实践示例

《MySQL分库分表的实践示例》MySQL分库分表适用于数据量大或并发压力高的场景,核心技术包括水平/垂直分片和分库,需应对分布式事务、跨库查询等挑战,通过中间件和解决方案实现,最佳实践为合理策略、备... 目录一、分库分表的触发条件1.1 数据量阈值1.2 并发压力二、分库分表的核心技术模块2.1 水平分

SpringBoot通过main方法启动web项目实践

《SpringBoot通过main方法启动web项目实践》SpringBoot通过SpringApplication.run()启动Web项目,自动推断应用类型,加载初始化器与监听器,配置Spring... 目录1. 启动入口:SpringApplication.run()2. SpringApplicat

Java整合Protocol Buffers实现高效数据序列化实践

《Java整合ProtocolBuffers实现高效数据序列化实践》ProtocolBuffers是Google开发的一种语言中立、平台中立、可扩展的结构化数据序列化机制,类似于XML但更小、更快... 目录一、Protocol Buffers简介1.1 什么是Protocol Buffers1.2 Pro

Python脚本轻松实现检测麦克风功能

《Python脚本轻松实现检测麦克风功能》在进行音频处理或开发需要使用麦克风的应用程序时,确保麦克风功能正常是非常重要的,本文将介绍一个简单的Python脚本,能够帮助我们检测本地麦克风的功能,需要的... 目录轻松检测麦克风功能脚本介绍一、python环境准备二、代码解析三、使用方法四、知识扩展轻松检测麦

linux安装、更新、卸载anaconda实践

《linux安装、更新、卸载anaconda实践》Anaconda是基于conda的科学计算环境,集成1400+包及依赖,安装需下载脚本、接受协议、设置路径、配置环境变量,更新与卸载通过conda命令... 目录随意找一个目录下载安装脚本检查许可证协议,ENTER就可以安装完毕之后激活anaconda安装更