Apriltag使用之二:方位估计(定位)

2023-12-02 01:08

本文主要是介绍Apriltag使用之二:方位估计(定位),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Apriltag中计算的Homography

首先,在进行apriltag码检测时,如果检测到会一并计算出图像上apriltag码四个角点对应的homography矩阵,这个homography将这些点映射到到标准的(-1,1),(1,1),(1,-1),(-1,-1)顶点。在上面的示例一中,由homography和apriltag角点为:

H = [ 3.3831e-01     7.066e-01      -1.8602e+00-5.1398e-01     1.6081e-01     -1.8558e+005.1039e-04    -7.7972e-05     -8.6540e-03]
%% 角点的齐次坐标
p1= [319.6915 165.3677 1.00]'
p2= [276.2611 313.7463 1.00]'
p3= [99.1906 268.6764 1.00]'
p4= [161.4450 127.7792 1.00]'

我们可以验证:

inv(H)*p1 = [ 110.05  110.05 -110.05]'  = [-1 -1  1]
inv(H)*P2 = [-123.98  123.98 -123.98]'  = [ 1 -1  1]
inv(H)*p3 = [-121.63 -121.63 -121.63]'  = [ 1  1  1]
inv(H)*p4 = [ 108.20 -108.20 -108.20]'  = [-1  1  1]

这里inv(H)是将相机图像上apriltag码角点映射到(-1,1),(1,1),(1,-1),(-1,-1)的homography。

Apriltag中的相机外参估计方法

通过给定相机的内参K,就可以利用homography对相机相对于apriltag码的方位进行估计。下面通过分析Apriltag的源码,阐述一下利用homography估计相机方位的方法。Apriltag中使用的方法属于技巧性的,

假设相机的内参矩阵为:
K = [ f x 0 c x 0 f y c y 0 0 1 ] \mathbf{K}=\left[\begin{array}{ccc} f_x & 0 & c_x \\ 0 & f_y & c_y \\ 0 & 0 & 1 \end{array}\right] K=fx000fy0cxcy1
那么相机的投影矩阵就为 P = K [ R ∣ t ] \mathbf{P=K[R|t]} P=K[Rt],空间上的点 X \mathbf{X} X通过该矩阵变为图像上的像素点 x = P X \mathbf{x=PX} x=PX
同时,我们设定Apriltag码所在的平面是在X-Y平面上( Z = 0 Z=0 Z=0),其中心为坐标原点。那么有:
x = K [ R ∣ t ] [ X Y 0 1 ] \mathbf{x}=\mathbf{K[R|t]}\left[\begin{array}{ccc} X \\ Y \\ 0 \\ 1 \end{array}\right] x=K[Rt]XY01
因此我们可以将其中 R \mathbf{R} R的第三列去掉,得到
x = K [ r 0 r 1 t ] [ X Y 1 ] \mathbf{x}=\mathbf{K[r_{0}\ r_{1}\ t]}\left[\begin{array}{ccc} X \\ Y \\ 1 \end{array}\right] x=K[r0 r1 t]XY1
其中 r 0 , r 1 \mathbf{r_0,r_1} r0,r1 R \mathbf{R} R的第一二列。

实际上 K [ r 0 r 1 t ] \mathbf{K[r_{0}\ r_{1}\ t]} K[r0 r1 t]就构成了空间平面上点到图像上点的homography。那么就有一个疑问,apriltag中计算的homography不是将apriltag码的角点映射到单位方形的吗? 是的,我们可以假想,将空间平面上的ariltag码缩小成单位方形,其实对相机的方向并没有影响,只对位置有影响。令
[ X Y 1 ] = [ λ 0 0 0 λ 0 0 0 1 ] [ X ′ Y ′ 1 ] \left[\begin{array}{c} X \\ Y \\ 1 \end{array}\right]= \left[\begin{array}{ccc} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & 1 \end{array}\right] \left[\begin{array}{c} X' \\ Y' \\ 1 \end{array}\right] XY1=λ000λ0001XY1
其中 [ X , Y , 1 ] ′ [X,Y,1]' [X,Y,1]为缩放后的单位方形的角点。因此有:
x = K [ r 0 r 1 t ] [ λ 0 0 0 λ 0 0 0 1 ] [ X ′ Y ′ 1 ] \mathbf{x}=\mathbf{K[r_{0}\ r_{1}\ t]} \left[\begin{array}{ccc} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & 1 \end{array}\right] \left[\begin{array}{ccc} X' \\ Y' \\ 1 \end{array}\right] x=K[r0 r1 t]λ000λ0001XY1
那么我们可以令 K [ λ r 0 λ r 1 t ] = K [ r 0 ′ r 1 ′ t ] \mathbf{K}[\lambda \mathbf{r}_0\ \lambda \mathbf{r}_1\ \mathbf{t}]=\mathbf{K[r'_{0}\ r'_{1}\ t]} K[λr0 λr1 t]=K[r0 r1 t]为apriltag计算出的 H ′ \mathbf{H}' H
就有如下分解等式:
f x r 00 ′ + c x r 20 ′ = h 00 f x r 01 ′ + c x r 21 ′ = h 01 f x t x + c x t z = h 02 f y r 10 ′ + c y r 20 ′ = h 10 f y r 11 ′ + c y r 21 ′ = h 11 f y t y + c y t z = h 12 r 20 ′ = h 20 r 21 ′ = h 21 t z = h 22 \begin{aligned} f_xr'_{00}+c_xr'_{20}=h_{00} \\ f_xr'_{01}+c_xr'_{21}=h_{01} \\ f_xt_x + c_xt_z = h_{02} \\ f_yr'_{10}+c_yr'_{20}=h_{10} \\ f_yr'_{11}+c_yr'_{21}=h_{11} \\ f_yt_y + c_yt_z = h_{12} \\ r'_{20} = h_{20} \\ r'_{21} = h_{21} \\ t_z = h_{22} \end{aligned} fxr00+cxr20=h00fxr01+cxr21=h01fxtx+cxtz=h02fyr10+cyr20=h10fyr11+cyr21=h11fyty+cytz=h12r20=h20r21=h21tz=h22

通过上式便可以解出 r 0 ′ \mathbf{r}'_0 r0 r 1 ′ \mathbf{r}'_1 r1 t \mathbf{t} t。由于 H ′ \mathbf{H}' H的各列本身都是非单位化的,因此计算出的 r 0 ′ \mathbf{r}'_0 r0 r 1 ′ \mathbf{r}'_1 r1就需要进行单位化处理。apriltag源码中是这样做的:
r 0 ′ ′ = r 0 ′ ∣ ∣ r 0 ′ ∣ ∣ ∣ ∣ r 1 ′ ∣ ∣ , r 1 ′ ′ = r 1 ′ ∣ ∣ r 0 ′ ∣ ∣ ∣ ∣ r 1 ′ ∣ ∣ , t ′ = t ∣ ∣ r 0 ′ ∣ ∣ ∣ ∣ r 1 ′ ∣ ∣ \mathbf{r''_0}=\frac{\mathbf{r'_0}}{\sqrt{||\mathbf{r'_0}||||\mathbf{r'_1}||} }, \qquad \mathbf{r''_1}=\frac{\mathbf{r'_1}}{\sqrt{||\mathbf{r'_0}||||\mathbf{r'_1}||} }, \qquad t'=\frac{\mathbf{t}}{\sqrt{||\mathbf{r'_0}||||\mathbf{r'_1}||} } r0=r0r1 r0,r1=r0r1 r1,t=r0r1 t
至于为什么 t \mathbf{t} t也要做除法,其实这是符合实际的。从另一个角度看,因为有 [ r 0 ′ r 1 ′ t ] = K − 1 H ′ [\mathbf{r'_0\ r'_1\ t}]=\mathbf{K^{-1}H'} [r0 r1 t]=K1H,当我们知道 K − 1 H ′ \mathbf{K^{-1}H'} K1H,就可以使得 K − 1 H ′ \mathbf{K^{-1}H'} K1H的前两列单位化来得到 r 0 ′ \mathbf{r}'_0 r0 r 1 ′ \mathbf{r}'_1 r1。假如要除以某个数来实现单位化,那么 K − 1 H ′ \mathbf{K^{-1}H'} K1H的第三列显示也要同时除以该数才能保持正确性。

到此我们应该清楚,单位化后 r 0 , r 1 \mathbf{r_0,r_1} r0,r1 r 0 ′ , r 1 ′ \mathbf{r'_0,r'_1} r0,r1是一样的,只有 t \mathbf{t} t t ′ \mathbf{t'} t的不同。对于在相机图像上同一个apriltag码, t \mathbf{t} t表示相机到 R \mathbf{R} R表示方向上实际大小aprilta码的距离, t ′ \mathbf{t'} t则表示相机到同一方向上实际大小为单位方形的apriltag码的距离。因为是对同一个Apriltag方形在 t \mathbf{t} t方向上的比例缩放,所以如果知道实际apriltag码的尺寸就可以通过比例计算出相机到实际apriltag码的距离。若apriltag码的宽度为 w w w,那么相机到实际apriltag码的距离就为 t = w t ′ \mathbf{t}=w\mathbf{t'} t=wt

apriltag中还将 R \mathbf{R} R矩阵进行SVD分解来进一步提高R的准确性。因为除以 ∣ ∣ r 0 ′ ∣ ∣ ∣ ∣ r 1 ′ ∣ ∣ \sqrt{||\mathbf{r'_0}||||\mathbf{r'_1}||} r0r1 并不一定会使得 r 0 , r 1 \mathbf{r_0,r_1} r0,r1是精确地单位化的,只是使得它们非常接近单位化。我们令 R = U Σ V T \mathbf{R=U\Sigma V^T} R=UΣVT,然后令 R ′ = U V T \mathbf{R'=UV^T} R=UVT即可。这是因为精确的 R \mathbf{R} R是单位正交矩阵,可以证明(利用 R R T = I \mathbf{RR^T=I} RRT=I)分解中 Σ = I \mathbf{\Sigma=I} Σ=I

到此,apriltag计算出旋转矩阵 R \mathbf{R} R和位置 t ′ \mathbf{t'} t。然后返回 4 × 4 4\times 4 4×4矩阵:
M = [ R t ′ 0 1 ] \mathbf{M}=\left[\begin{array}{cc} \mathbf{R} & \mathbf{t'} \\ 0 & 1 \end{array} \right] M=[R0t1]
注意Apriltag功能包输出的是 t ′ \mathbf{t'} t,要获得实际apriltag码的位置 t \mathbf{t} t还需要自行进行上述的比例缩放。

在图像上标记Apriltag码的方向

得到了R和t后,相机的投影矩阵为 P = K [ R T ∣ − t ] \mathbf{P=K[R^T|-t]} P=K[RTt]

现在仍以apriltag中心为参考坐标系,取apriltag的法向量为 n = [ 0 , 0 , − 1 ] \mathbf{n}=[0,0,-1] n=[0,0,1],这也表示了向量的顶端的位置点,将该位置点投影到图像上,得到的点与apriltag的图像中心点的连线即为法线在图像上的投影,用来表示apriltag的方向。

下面是在图像上显示apriltag方向的代码以及测试的结果

      #计算并显示apriltag码的方向M,e1,e2=at_detector.detection_pose(tag, cam_params)P=M[:3,:4]P=np.matmul(K,P)x=np.matmul(P,np.array([[0],[0],[-1],[1]]))x=x/x[2]cv2.line(frame, tuple(tag.center.astype(int)), tuple(x[:2].astype(int)), (0,0,255),2)

下面的图中,将摄像头安装在机器人上,使用的Apriltag码的宽度为0.08m,估计出的距离为0.48 m,和实际量出来的距离基本是一致的。

这篇关于Apriltag使用之二:方位估计(定位)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/443380

相关文章

线上Java OOM问题定位与解决方案超详细解析

《线上JavaOOM问题定位与解决方案超详细解析》OOM是JVM抛出的错误,表示内存分配失败,:本文主要介绍线上JavaOOM问题定位与解决方案的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录一、OOM问题核心认知1.1 OOM定义与技术定位1.2 OOM常见类型及技术特征二、OOM问题定位工具

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

Spring Security简介、使用与最佳实践

《SpringSecurity简介、使用与最佳实践》SpringSecurity是一个能够为基于Spring的企业应用系统提供声明式的安全访问控制解决方案的安全框架,本文给大家介绍SpringSec... 目录一、如何理解 Spring Security?—— 核心思想二、如何在 Java 项目中使用?——

springboot中使用okhttp3的小结

《springboot中使用okhttp3的小结》OkHttp3是一个JavaHTTP客户端,可以处理各种请求类型,比如GET、POST、PUT等,并且支持高效的HTTP连接池、请求和响应缓存、以及异... 在 Spring Boot 项目中使用 OkHttp3 进行 HTTP 请求是一个高效且流行的方式。

Java使用Javassist动态生成HelloWorld类

《Java使用Javassist动态生成HelloWorld类》Javassist是一个非常强大的字节码操作和定义库,它允许开发者在运行时创建新的类或者修改现有的类,本文将简单介绍如何使用Javass... 目录1. Javassist简介2. 环境准备3. 动态生成HelloWorld类3.1 创建CtC

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Java使用jar命令配置服务器端口的完整指南

《Java使用jar命令配置服务器端口的完整指南》本文将详细介绍如何使用java-jar命令启动应用,并重点讲解如何配置服务器端口,同时提供一个实用的Web工具来简化这一过程,希望对大家有所帮助... 目录1. Java Jar文件简介1.1 什么是Jar文件1.2 创建可执行Jar文件2. 使用java

C#使用Spire.Doc for .NET实现HTML转Word的高效方案

《C#使用Spire.Docfor.NET实现HTML转Word的高效方案》在Web开发中,HTML内容的生成与处理是高频需求,然而,当用户需要将HTML页面或动态生成的HTML字符串转换为Wor... 目录引言一、html转Word的典型场景与挑战二、用 Spire.Doc 实现 HTML 转 Word1

Java中的抽象类与abstract 关键字使用详解

《Java中的抽象类与abstract关键字使用详解》:本文主要介绍Java中的抽象类与abstract关键字使用详解,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录一、抽象类的概念二、使用 abstract2.1 修饰类 => 抽象类2.2 修饰方法 => 抽象方法,没有

MyBatis ParameterHandler的具体使用

《MyBatisParameterHandler的具体使用》本文主要介绍了MyBatisParameterHandler的具体使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参... 目录一、概述二、源码1 关键属性2.setParameters3.TypeHandler1.TypeHa