Apriltag使用之二:方位估计(定位)

2023-12-02 01:08

本文主要是介绍Apriltag使用之二:方位估计(定位),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Apriltag中计算的Homography

首先,在进行apriltag码检测时,如果检测到会一并计算出图像上apriltag码四个角点对应的homography矩阵,这个homography将这些点映射到到标准的(-1,1),(1,1),(1,-1),(-1,-1)顶点。在上面的示例一中,由homography和apriltag角点为:

H = [ 3.3831e-01     7.066e-01      -1.8602e+00-5.1398e-01     1.6081e-01     -1.8558e+005.1039e-04    -7.7972e-05     -8.6540e-03]
%% 角点的齐次坐标
p1= [319.6915 165.3677 1.00]'
p2= [276.2611 313.7463 1.00]'
p3= [99.1906 268.6764 1.00]'
p4= [161.4450 127.7792 1.00]'

我们可以验证:

inv(H)*p1 = [ 110.05  110.05 -110.05]'  = [-1 -1  1]
inv(H)*P2 = [-123.98  123.98 -123.98]'  = [ 1 -1  1]
inv(H)*p3 = [-121.63 -121.63 -121.63]'  = [ 1  1  1]
inv(H)*p4 = [ 108.20 -108.20 -108.20]'  = [-1  1  1]

这里inv(H)是将相机图像上apriltag码角点映射到(-1,1),(1,1),(1,-1),(-1,-1)的homography。

Apriltag中的相机外参估计方法

通过给定相机的内参K,就可以利用homography对相机相对于apriltag码的方位进行估计。下面通过分析Apriltag的源码,阐述一下利用homography估计相机方位的方法。Apriltag中使用的方法属于技巧性的,

假设相机的内参矩阵为:
K = [ f x 0 c x 0 f y c y 0 0 1 ] \mathbf{K}=\left[\begin{array}{ccc} f_x & 0 & c_x \\ 0 & f_y & c_y \\ 0 & 0 & 1 \end{array}\right] K=fx000fy0cxcy1
那么相机的投影矩阵就为 P = K [ R ∣ t ] \mathbf{P=K[R|t]} P=K[Rt],空间上的点 X \mathbf{X} X通过该矩阵变为图像上的像素点 x = P X \mathbf{x=PX} x=PX
同时,我们设定Apriltag码所在的平面是在X-Y平面上( Z = 0 Z=0 Z=0),其中心为坐标原点。那么有:
x = K [ R ∣ t ] [ X Y 0 1 ] \mathbf{x}=\mathbf{K[R|t]}\left[\begin{array}{ccc} X \\ Y \\ 0 \\ 1 \end{array}\right] x=K[Rt]XY01
因此我们可以将其中 R \mathbf{R} R的第三列去掉,得到
x = K [ r 0 r 1 t ] [ X Y 1 ] \mathbf{x}=\mathbf{K[r_{0}\ r_{1}\ t]}\left[\begin{array}{ccc} X \\ Y \\ 1 \end{array}\right] x=K[r0 r1 t]XY1
其中 r 0 , r 1 \mathbf{r_0,r_1} r0,r1 R \mathbf{R} R的第一二列。

实际上 K [ r 0 r 1 t ] \mathbf{K[r_{0}\ r_{1}\ t]} K[r0 r1 t]就构成了空间平面上点到图像上点的homography。那么就有一个疑问,apriltag中计算的homography不是将apriltag码的角点映射到单位方形的吗? 是的,我们可以假想,将空间平面上的ariltag码缩小成单位方形,其实对相机的方向并没有影响,只对位置有影响。令
[ X Y 1 ] = [ λ 0 0 0 λ 0 0 0 1 ] [ X ′ Y ′ 1 ] \left[\begin{array}{c} X \\ Y \\ 1 \end{array}\right]= \left[\begin{array}{ccc} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & 1 \end{array}\right] \left[\begin{array}{c} X' \\ Y' \\ 1 \end{array}\right] XY1=λ000λ0001XY1
其中 [ X , Y , 1 ] ′ [X,Y,1]' [X,Y,1]为缩放后的单位方形的角点。因此有:
x = K [ r 0 r 1 t ] [ λ 0 0 0 λ 0 0 0 1 ] [ X ′ Y ′ 1 ] \mathbf{x}=\mathbf{K[r_{0}\ r_{1}\ t]} \left[\begin{array}{ccc} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & 1 \end{array}\right] \left[\begin{array}{ccc} X' \\ Y' \\ 1 \end{array}\right] x=K[r0 r1 t]λ000λ0001XY1
那么我们可以令 K [ λ r 0 λ r 1 t ] = K [ r 0 ′ r 1 ′ t ] \mathbf{K}[\lambda \mathbf{r}_0\ \lambda \mathbf{r}_1\ \mathbf{t}]=\mathbf{K[r'_{0}\ r'_{1}\ t]} K[λr0 λr1 t]=K[r0 r1 t]为apriltag计算出的 H ′ \mathbf{H}' H
就有如下分解等式:
f x r 00 ′ + c x r 20 ′ = h 00 f x r 01 ′ + c x r 21 ′ = h 01 f x t x + c x t z = h 02 f y r 10 ′ + c y r 20 ′ = h 10 f y r 11 ′ + c y r 21 ′ = h 11 f y t y + c y t z = h 12 r 20 ′ = h 20 r 21 ′ = h 21 t z = h 22 \begin{aligned} f_xr'_{00}+c_xr'_{20}=h_{00} \\ f_xr'_{01}+c_xr'_{21}=h_{01} \\ f_xt_x + c_xt_z = h_{02} \\ f_yr'_{10}+c_yr'_{20}=h_{10} \\ f_yr'_{11}+c_yr'_{21}=h_{11} \\ f_yt_y + c_yt_z = h_{12} \\ r'_{20} = h_{20} \\ r'_{21} = h_{21} \\ t_z = h_{22} \end{aligned} fxr00+cxr20=h00fxr01+cxr21=h01fxtx+cxtz=h02fyr10+cyr20=h10fyr11+cyr21=h11fyty+cytz=h12r20=h20r21=h21tz=h22

通过上式便可以解出 r 0 ′ \mathbf{r}'_0 r0 r 1 ′ \mathbf{r}'_1 r1 t \mathbf{t} t。由于 H ′ \mathbf{H}' H的各列本身都是非单位化的,因此计算出的 r 0 ′ \mathbf{r}'_0 r0 r 1 ′ \mathbf{r}'_1 r1就需要进行单位化处理。apriltag源码中是这样做的:
r 0 ′ ′ = r 0 ′ ∣ ∣ r 0 ′ ∣ ∣ ∣ ∣ r 1 ′ ∣ ∣ , r 1 ′ ′ = r 1 ′ ∣ ∣ r 0 ′ ∣ ∣ ∣ ∣ r 1 ′ ∣ ∣ , t ′ = t ∣ ∣ r 0 ′ ∣ ∣ ∣ ∣ r 1 ′ ∣ ∣ \mathbf{r''_0}=\frac{\mathbf{r'_0}}{\sqrt{||\mathbf{r'_0}||||\mathbf{r'_1}||} }, \qquad \mathbf{r''_1}=\frac{\mathbf{r'_1}}{\sqrt{||\mathbf{r'_0}||||\mathbf{r'_1}||} }, \qquad t'=\frac{\mathbf{t}}{\sqrt{||\mathbf{r'_0}||||\mathbf{r'_1}||} } r0=r0r1 r0,r1=r0r1 r1,t=r0r1 t
至于为什么 t \mathbf{t} t也要做除法,其实这是符合实际的。从另一个角度看,因为有 [ r 0 ′ r 1 ′ t ] = K − 1 H ′ [\mathbf{r'_0\ r'_1\ t}]=\mathbf{K^{-1}H'} [r0 r1 t]=K1H,当我们知道 K − 1 H ′ \mathbf{K^{-1}H'} K1H,就可以使得 K − 1 H ′ \mathbf{K^{-1}H'} K1H的前两列单位化来得到 r 0 ′ \mathbf{r}'_0 r0 r 1 ′ \mathbf{r}'_1 r1。假如要除以某个数来实现单位化,那么 K − 1 H ′ \mathbf{K^{-1}H'} K1H的第三列显示也要同时除以该数才能保持正确性。

到此我们应该清楚,单位化后 r 0 , r 1 \mathbf{r_0,r_1} r0,r1 r 0 ′ , r 1 ′ \mathbf{r'_0,r'_1} r0,r1是一样的,只有 t \mathbf{t} t t ′ \mathbf{t'} t的不同。对于在相机图像上同一个apriltag码, t \mathbf{t} t表示相机到 R \mathbf{R} R表示方向上实际大小aprilta码的距离, t ′ \mathbf{t'} t则表示相机到同一方向上实际大小为单位方形的apriltag码的距离。因为是对同一个Apriltag方形在 t \mathbf{t} t方向上的比例缩放,所以如果知道实际apriltag码的尺寸就可以通过比例计算出相机到实际apriltag码的距离。若apriltag码的宽度为 w w w,那么相机到实际apriltag码的距离就为 t = w t ′ \mathbf{t}=w\mathbf{t'} t=wt

apriltag中还将 R \mathbf{R} R矩阵进行SVD分解来进一步提高R的准确性。因为除以 ∣ ∣ r 0 ′ ∣ ∣ ∣ ∣ r 1 ′ ∣ ∣ \sqrt{||\mathbf{r'_0}||||\mathbf{r'_1}||} r0r1 并不一定会使得 r 0 , r 1 \mathbf{r_0,r_1} r0,r1是精确地单位化的,只是使得它们非常接近单位化。我们令 R = U Σ V T \mathbf{R=U\Sigma V^T} R=UΣVT,然后令 R ′ = U V T \mathbf{R'=UV^T} R=UVT即可。这是因为精确的 R \mathbf{R} R是单位正交矩阵,可以证明(利用 R R T = I \mathbf{RR^T=I} RRT=I)分解中 Σ = I \mathbf{\Sigma=I} Σ=I

到此,apriltag计算出旋转矩阵 R \mathbf{R} R和位置 t ′ \mathbf{t'} t。然后返回 4 × 4 4\times 4 4×4矩阵:
M = [ R t ′ 0 1 ] \mathbf{M}=\left[\begin{array}{cc} \mathbf{R} & \mathbf{t'} \\ 0 & 1 \end{array} \right] M=[R0t1]
注意Apriltag功能包输出的是 t ′ \mathbf{t'} t,要获得实际apriltag码的位置 t \mathbf{t} t还需要自行进行上述的比例缩放。

在图像上标记Apriltag码的方向

得到了R和t后,相机的投影矩阵为 P = K [ R T ∣ − t ] \mathbf{P=K[R^T|-t]} P=K[RTt]

现在仍以apriltag中心为参考坐标系,取apriltag的法向量为 n = [ 0 , 0 , − 1 ] \mathbf{n}=[0,0,-1] n=[0,0,1],这也表示了向量的顶端的位置点,将该位置点投影到图像上,得到的点与apriltag的图像中心点的连线即为法线在图像上的投影,用来表示apriltag的方向。

下面是在图像上显示apriltag方向的代码以及测试的结果

      #计算并显示apriltag码的方向M,e1,e2=at_detector.detection_pose(tag, cam_params)P=M[:3,:4]P=np.matmul(K,P)x=np.matmul(P,np.array([[0],[0],[-1],[1]]))x=x/x[2]cv2.line(frame, tuple(tag.center.astype(int)), tuple(x[:2].astype(int)), (0,0,255),2)

下面的图中,将摄像头安装在机器人上,使用的Apriltag码的宽度为0.08m,估计出的距离为0.48 m,和实际量出来的距离基本是一致的。

这篇关于Apriltag使用之二:方位估计(定位)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/443380

相关文章

java中XML的使用全过程

《java中XML的使用全过程》:本文主要介绍java中XML的使用全过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录什么是XML特点XML作用XML的编写语法基本语法特殊字符编写约束XML的书写格式DTD文档schema文档解析XML的方法​​DOM解析XM

使用Java实现Navicat密码的加密与解密的代码解析

《使用Java实现Navicat密码的加密与解密的代码解析》:本文主要介绍使用Java实现Navicat密码的加密与解密,通过本文,我们了解了如何利用Java语言实现对Navicat保存的数据库密... 目录一、背景介绍二、环境准备三、代码解析四、核心代码展示五、总结在日常开发过程中,我们有时需要处理各种软

使用Nginx配置文件服务器方式

《使用Nginx配置文件服务器方式》:本文主要介绍使用Nginx配置文件服务器方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1. 为什么选择 Nginx 作为文件服务器?2. 环境准备3. 配置 Nginx 文件服务器4. 将文件放入服务器目录5. 启动 N

使用nohup和--remove-source-files在后台运行rsync并记录日志方式

《使用nohup和--remove-source-files在后台运行rsync并记录日志方式》:本文主要介绍使用nohup和--remove-source-files在后台运行rsync并记录日... 目录一、什么是 --remove-source-files?二、示例命令三、命令详解1. nohup2.

Qt之QMessageBox的具体使用

《Qt之QMessageBox的具体使用》本文介绍Qt中QMessageBox类的使用,用于弹出提示、警告、错误等模态对话框,具有一定的参考价值,感兴趣的可以了解一下... 目录1.引言2.简单介绍3.常见函数4.按钮类型(QMessage::StandardButton)5.分步骤实现弹窗6.总结1.引言

Python使用Reflex构建现代Web应用的完全指南

《Python使用Reflex构建现代Web应用的完全指南》这篇文章为大家深入介绍了Reflex框架的设计理念,技术特性,项目结构,核心API,实际开发流程以及与其他框架的对比和部署建议,感兴趣的小伙... 目录什么是 ReFlex?为什么选择 Reflex?安装与环境配置构建你的第一个应用核心概念解析组件

Qt中Qfile类的使用

《Qt中Qfile类的使用》很多应用程序都具备操作文件的能力,包括对文件进行写入和读取,创建和删除文件,本文主要介绍了Qt中Qfile类的使用,具有一定的参考价值,感兴趣的可以了解一下... 目录1.引言2.QFile文件操作3.演示示例3.1实验一3.2实验二【演示 QFile 读写二进制文件的过程】4.

spring security 超详细使用教程及如何接入springboot、前后端分离

《springsecurity超详细使用教程及如何接入springboot、前后端分离》SpringSecurity是一个强大且可扩展的框架,用于保护Java应用程序,尤其是基于Spring的应用... 目录1、准备工作1.1 引入依赖1.2 用户认证的配置1.3 基本的配置1.4 常用配置2、加密1. 密

WinForms中主要控件的详细使用教程

《WinForms中主要控件的详细使用教程》WinForms(WindowsForms)是Microsoft提供的用于构建Windows桌面应用程序的框架,它提供了丰富的控件集合,可以满足各种UI设计... 目录一、基础控件1. Button (按钮)2. Label (标签)3. TextBox (文本框

使用Vue-ECharts实现数据可视化图表功能

《使用Vue-ECharts实现数据可视化图表功能》在前端开发中,经常会遇到需要展示数据可视化的需求,比如柱状图、折线图、饼图等,这类需求不仅要求我们准确地将数据呈现出来,还需要兼顾美观与交互体验,所... 目录前言为什么选择 vue-ECharts?1. 基于 ECharts,功能强大2. 更符合 Vue