【动手学深度学习】(七)丢弃法

2023-12-01 23:36
文章标签 学习 深度 动手 丢弃

本文主要是介绍【动手学深度学习】(七)丢弃法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 一、理论知识
  • 二、代码实现
    • 2.1从零开始实现Dropout
  • 【相关总结】
    • np.random.uniform(low,high,size)
    • astype
    • torch.rand()

一、理论知识

1.动机

  • 一个好的模型需要对输入数据的扰动鲁棒
    • 使用有噪音的数据等价于Tikhonov正则
    • 丢弃法:在层之间加入噪音
      2.无偏差的加入噪音
  • 对x加入噪音得到x’,我们希望
    在这里插入图片描述
  • 丢弃法对每个元素进行如下扰动在这里插入图片描述

在这里插入图片描述
3.使用场景

  • 通常将丢弃法作用在隐藏全连接层的输出上
    在这里插入图片描述
    4.推理中的丢弃法
  • 正则项只在训练中使用:他们影响模型参数的更新
  • 在推理过程中,丢弃法直接返回输出
    在这里插入图片描述
    总结:
  • 丢弃法将一些输出项随机置0来控制模型复杂度
  • 常作用在多层感知机的隐藏层输出上
  • 丢弃概率是控制模型复杂度的超参数

二、代码实现

2.1从零开始实现Dropout

import torch
from torch import nn
from d2l import torch as d2ldef dropout_layer(X, dropout):assert 0 <= dropout <= 1if dropout == 1:
#         全置0,即全丢弃return torch.zeros_like(x)if dropout == 0:
#         全保留return X
#     掩码中的元素大于 dropout 的值时为 True,表示该元素丢弃;mask = np.random.uniform(0, 1, X.shape) > dropout
#     mask = (torch.randn(X.shape) > dropout).float()
# 进行归一化,保持期望不变return mask.astype(np.float32) * X / (1.0 - dropout)

需要解释一下最后为什么需要进行归一化(即对保留的元素进行缩放)

在进行 Dropout 操作时,为了保持期望值不变,需要对被保留的神经元的输出进行归一化。Dropout 实际上是在训练期间按照一定概率随机将某些神经元的输出置零,这样可以防止模型过拟合。
假设在一个 Dropout 操作中,有一部分神经元被保留,而一部分被置零。那么为了保持期望值不变,就需要对被保留的神经元的输出进行归一化。这是因为在测试阶段,所有神经元都会参与预测,而在训练阶段,有一部分参与训练。如果在训练时不对被保留的神经元的输出进行归一化,那么在测试时整体的输出值就会偏大,因为所有神经元都要参与预测。

具体而言,对于被保留的神经元,其输出值 X 会乘以一个缩放因子,即 1.0 / (1.0 -dropout)。这样,在训练阶段,因为有一部分神经元被置零,乘以缩放因子后可以保持整体期望值不变。在测试阶段,因为所有神经元都是活跃的,这个缩放因子就等于1,不影响整体输出。

所以,通过除以 (1.0 - dropout) 进行归一化,可以在 Dropout操作中保持整体期望值不变,确保在训练和测试阶段输出值的一致性。
训练时输出的期望是E(x)=[(1-p)x+p*0]/(1-p) = x
测试阶段的期望值等于模型的实际输出,X

【相关总结】

np.random.uniform(low,high,size)

生成服从[low,high)范围内的均匀分布的元素。

low:生成元素值的下界(默认为0)
high:生成元素值的上界(默认为1)
size:输出设置

import numpy as np# 默认为[0,1)的均匀分布
arr = np.random.uniform()
print(arr)# 指定low,high
arr = np.random.uniform(2, 8)
print(arr)# 指定size
arr = np.random.uniform(2,8, (3,3))
print(arr)

0.8091521937664127
7.354698032780574
[[2.43782389 4.08495999 2.84664462]
[5.61473981 6.99573442 7.15074041]
[3.27288764 2.22821273 5.99610331]]

astype

转换数组数据类型

import numpy as np# 创建一个整数数组
arr_int = np.array([1, 2, 3, 4, 5])# 将整数数组转换为浮点数数组
arr_float = arr_int.astype(np.float32)print(arr_float)

[1. 2. 3. 4. 5.]

# 创建一个布尔数组
arr_bool = np.array([True, False, True, False])# 将布尔数组转换为整数数组
arr_int_from_bool = arr_bool.astype(np.int)print(arr_int_from_bool)

[1 0 1 0]

torch.rand()

用于生成随机数,生成在区间 [0, 1) 内均匀分布的随机数,包括 0,但不包括 1。

import torch# 生成一个包含随机数的张量,形状为 (3, 4)
random_tensor = torch.rand(3, 4)print(random_tensor)

tensor([[0.2901, 0.8945, 0.7689, 0.5298],
[0.6336, 0.8918, 0.8178, 0.8453],
[0.0051, 0.8169, 0.1454, 0.9368]])

如果需要生成在其他区间的随机数,可以通过适当的缩放和平移来实现。例如,如果要生成在区间 [a, b) 内均匀分布的随机数,可以使用:

tensor([[3.1698, 2.7084, 2.2045, 4.5003],
[3.1167, 4.5860, 3.7704, 4.0340],
[3.1466, 2.3846, 4.7165, 4.7822]])

这篇关于【动手学深度学习】(七)丢弃法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/443119

相关文章

深度解析Spring Security 中的 SecurityFilterChain核心功能

《深度解析SpringSecurity中的SecurityFilterChain核心功能》SecurityFilterChain通过组件化配置、类型安全路径匹配、多链协同三大特性,重构了Spri... 目录Spring Security 中的SecurityFilterChain深度解析一、Security

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

深度解析Java项目中包和包之间的联系

《深度解析Java项目中包和包之间的联系》文章浏览阅读850次,点赞13次,收藏8次。本文详细介绍了Java分层架构中的几个关键包:DTO、Controller、Service和Mapper。_jav... 目录前言一、各大包1.DTO1.1、DTO的核心用途1.2. DTO与实体类(Entity)的区别1

深度解析Python装饰器常见用法与进阶技巧

《深度解析Python装饰器常见用法与进阶技巧》Python装饰器(Decorator)是提升代码可读性与复用性的强大工具,本文将深入解析Python装饰器的原理,常见用法,进阶技巧与最佳实践,希望可... 目录装饰器的基本原理函数装饰器的常见用法带参数的装饰器类装饰器与方法装饰器装饰器的嵌套与组合进阶技巧

深度解析Spring Boot拦截器Interceptor与过滤器Filter的区别与实战指南

《深度解析SpringBoot拦截器Interceptor与过滤器Filter的区别与实战指南》本文深度解析SpringBoot中拦截器与过滤器的区别,涵盖执行顺序、依赖关系、异常处理等核心差异,并... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现

深度解析Spring AOP @Aspect 原理、实战与最佳实践教程

《深度解析SpringAOP@Aspect原理、实战与最佳实践教程》文章系统讲解了SpringAOP核心概念、实现方式及原理,涵盖横切关注点分离、代理机制(JDK/CGLIB)、切入点类型、性能... 目录1. @ASPect 核心概念1.1 AOP 编程范式1.2 @Aspect 关键特性2. 完整代码实

SpringBoot开发中十大常见陷阱深度解析与避坑指南

《SpringBoot开发中十大常见陷阱深度解析与避坑指南》在SpringBoot的开发过程中,即使是经验丰富的开发者也难免会遇到各种棘手的问题,本文将针对SpringBoot开发中十大常见的“坑... 目录引言一、配置总出错?是不是同时用了.properties和.yml?二、换个位置配置就失效?搞清楚加

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

Python中文件读取操作漏洞深度解析与防护指南

《Python中文件读取操作漏洞深度解析与防护指南》在Web应用开发中,文件操作是最基础也最危险的功能之一,这篇文章将全面剖析Python环境中常见的文件读取漏洞类型,成因及防护方案,感兴趣的小伙伴可... 目录引言一、静态资源处理中的路径穿越漏洞1.1 典型漏洞场景1.2 os.path.join()的陷