python实现two way ANOVA

2023-12-01 09:44
文章标签 python 实现 two way anova

本文主要是介绍python实现two way ANOVA,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 目的:用python实现two way ANOVA 双因素方差分析
    • 1. python代码实现
      • 1 加载python库
      • 2 加载数据
      • 3 统计样本重复次数,均值和方差,绘制箱线图
      • 4 查看people和group是否存在交互效应
      • 5 模型拟合与Two Way ANOVA:双因素方差分析
      • 6 多重比较,post hoc t-tests
      • 7 计算效应量Correlation family: η^2、ω^2 (适用于 Correlational data)
    • 2. 双因素方差分析理论和公式
    • 3. 效应量分析

目的:用python实现two way ANOVA 双因素方差分析

1. python代码实现

在这里插入图片描述

1 加载python库

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from scipy import stats   from statsmodels.formula.api import ols                     # 最小二乘法拟合
from statsmodels.stats.anova import anova_lm                # 方差分析
from statsmodels.stats.multicomp import pairwise_tukeyhsd   # post Hoc t_test

2 加载数据

value(month):治疗2周的各类被试的血糖值
group(PhysicalTherapy):表示有两种治疗方案,sham组(1)和rTMS组(2)
people(PsychiatricTreatment):表示有3种被试,年轻健康组(3)、老年健康组(1)、老年患病组(2)

df = pd.read_excel('data//TMS_demoData1.xlsx')
data = pd.DataFrame(df)
data.head(24)
valuegrouppeople
011.011
19.412
212.513
39.611
49.612
511.513
610.811
79.612
810.513
910.511
1010.812
1112.513
1210.521
1310.822
1410.523
1511.521
1610.522
1711.823
1812.021
1910.522
2011.523
2111.821
2210.222
2311.523

3 统计样本重复次数,均值和方差,绘制箱线图

data.describe()
valuegrouppeople
count24.00000024.00000024.000000
mean10.8916671.5000002.000000
std0.8895120.5107540.834058
min9.4000001.0000001.000000
25%10.5000001.0000001.000000
50%10.8000001.5000002.000000
75%11.5000002.0000003.000000
max12.5000002.0000003.000000
fig, ax = plt.subplots(1,2,figsize=(12,6),dpi=600)  # 1行2列的子图
sns.boxplot(x = 'group', y = 'value', data = data, ax = ax[0])
sns.boxplot(x = 'people', y = 'value', data = data, ax = ax[1])## 可以看出rTMS组的血糖水平sham组的高,因此我们得看这是由于治疗方案引起的还是由于随机误差引起的
## 即从试验结果推断,因素 group 对试验结果有无显著影响,即当 group 取不同水平时试验结果有无显著差别
## 第5步方差分析的结果显示,因素 group 对试验结果无显著影响(p = 0.149),即当 group 取不同水平时试验结果无显著差别

请添加图片描述

4 查看people和group是否存在交互效应

  • 主效应:一个自变量变化时,因变量所出现的变化。
  • 交互效应:反应的是两个或多个自变量对因变量的联合影响,这种影响不能简单的通过自变量的主效应相加获得。
fig, ax = plt.subplots(1,2,figsize=(12,6),dpi=600)  # 1行2列的子图
sns.lineplot(y='value', x = 'people', hue = 'group', palette="tab10", data=data, ax = ax[0])
sns.lineplot(y='value', x = 'group', hue = 'people', palette="tab10", data=data, ax = ax[1])

请添加图片描述

从上图可以看出,people 2和3之间是存在交互效应的,下面可以通过方差分析来检验

5 模型拟合与Two Way ANOVA:双因素方差分析

model = ols('value ~C(group) + C(people) + C(group):C(people)', data = data).fit()
anova_table = anova_lm(model, type = 2)
pd.DataFrame(anova_table)
dfsum_sqmean_sqFPR(>F)
C(group)1.00.9600000.9600002.2721890.149064
C(people)2.07.4858333.7429178.8589740.002096
C(group):C(people)2.02.1475001.0737502.5414200.106623
Residual18.07.6050000.422500NaNNaN

根据上述结果可以发现:

  1. people组是小于0.05的,存在显著性差异。即people因素对指标value有显著性影响。
  2. group和两者的交互效应是大于0.05的,接受假设,不存在显著性差异,不存在交互效应。
  3. 因为people对value存在显著性差异,我们得进行进一步的T检验,查看是那两组之间存在显著性差异。
print(model.summary())
                            OLS Regression Results                            
==============================================================================
Dep. Variable:                  value   R-squared:                       0.582
Model:                            OLS   Adj. R-squared:                  0.466
Method:                 Least Squares   F-statistic:                     5.015
Date:                Thu, 30 Nov 2023   Prob (F-statistic):            0.00473
Time:                        17:55:19   Log-Likelihood:                -20.264
No. Observations:                  24   AIC:                             52.53
Df Residuals:                      18   BIC:                             59.60
Df Model:                           5                                         
Covariance Type:            nonrobust                                         
================================================================================================coef    std err          t      P>|t|      [0.025      0.975]
------------------------------------------------------------------------------------------------
Intercept                       10.4750      0.325     32.231      0.000       9.792      11.158
C(group)[T.2]                    0.9750      0.460      2.121      0.048       0.009       1.941
C(people)[T.2]                  -0.6250      0.460     -1.360      0.191      -1.591       0.341
C(people)[T.3]                   1.2750      0.460      2.774      0.013       0.309       2.241
C(group)[T.2]:C(people)[T.2]    -0.3250      0.650     -0.500      0.623      -1.691       1.041
C(group)[T.2]:C(people)[T.3]    -1.4000      0.650     -2.154      0.045      -2.766      -0.034
==============================================================================
Omnibus:                        1.196   Durbin-Watson:                   2.279
Prob(Omnibus):                  0.550   Jarque-Bera (JB):                1.081
Skew:                          -0.461   Prob(JB):                        0.582
Kurtosis:                       2.518   Cond. No.                         9.77
==============================================================================Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
print(model.params)
# 拟合公式
# Yij = 10.475*G(1)*P(1) + 0.9150*G(2) - 0.625*P(2) + 1.275*P(3) - 0.325*G(2)*P(2) -1.4*G(2)*P(3)
Intercept                       10.475
C(group)[T.2]                    0.975
C(people)[T.2]                  -0.625
C(people)[T.3]                   1.275
C(group)[T.2]:C(people)[T.2]    -0.325
C(group)[T.2]:C(people)[T.3]    -1.400
dtype: float64

曲线拟合出来的实为每一种组合的均值:拟合参数验算
*** 无论是普通线性模型还是广义线性模型,预测的都是自变量x取特定值时因变量y的平均值。
因变量y的实际取值与其平均值之差被称为误差项,而误差的分布很大程度上决定了使用什么模型。

# Yij = 10.475*G(1)*P(1) + 0.9150*G(2) - 0.625*P(2) + 1.275*P(3) - 0.325*G(2)*P(2) -1.4*G(2)*P(3)
# GPxx:实际值
# Y_GPxx:预测值
''' Group = 1,People = 1 这个作为截距,后面的每一种组合要加上Intercept'''
Intercept = (11+9.6+10.8+10.5)/4 ''' Group = 1, People = 2 '''
GP12 = (9.4+9.6+9.6+10.8)/4
Y_GP12 = 10.475 - 0.625''' Group = 1, People = 3 '''
GP13 = (12.5+11.5+10.5+12.5)/4
Y_GP13 = 10.475 + 1.275''' Group = 2, People = 1 '''
GP21 = (10.5+11.5+12+11.8)/4
Y_GP21 = 10.475 + 0.9105''' Group = 2, People = 2 '''
GP22 = (10.8+10.5+10.5+10.2)/4
Y_GP22 = 10.475 + 0.9105 - 0.625 - 0.325''' Group = 2, People = 3 '''
GP23 = (10.5+11.8+11.5+11.5)/4
Y_GP23 = 10.475 + 0.9105 + 1.275 - 1.4print('Intercept:', Intercept)
print('GP12:',GP12, 'Y_GP12:',Y_GP12)
print('GP13:',GP13, 'Y_GP13:',Y_GP13)
print('GP21:',GP21, 'Y_GP21:',Y_GP21)
print('GP22:',GP22, 'Y_GP22:',Y_GP22)
print('GP23:',GP23, 'Y_GP23:',Y_GP23)
Intercept: 10.475000000000001
GP12: 9.850000000000001 Y_GP12: 9.85
GP13: 11.75 Y_GP13: 11.75
GP21: 11.45 Y_GP21: 11.3855
GP22: 10.5 Y_GP22: 10.435500000000001
GP23: 11.325 Y_GP23: 11.2605

6 多重比较,post hoc t-tests

print("people因子不同水平的比较结果:", pairwise_tukeyhsd(data['value'], data['people']))
print("###########################\n")
print("group 因子不同水平的比较结果:", pairwise_tukeyhsd(data['value'], data['group']))print("结果说明: reject=True,说明两组之间有显著性差异。")
people因子不同水平的比较结果: Multiple Comparison of Means - Tukey HSD, FWER=0.05
===================================================
group1 group2 meandiff p-adj   lower  upper  reject
---------------------------------------------------1      2  -0.7875 0.0935 -1.6876 0.1126  False1      3    0.575 0.2635 -0.3251 1.4751  False2      3   1.3625 0.0028  0.4624 2.2626   True
---------------------------------------------------
###########################group 因子不同水平的比较结果: Multiple Comparison of Means - Tukey HSD, FWER=0.05
===================================================
group1 group2 meandiff p-adj   lower  upper  reject
---------------------------------------------------1      2      0.4 0.2803 -0.3495 1.1495  False
---------------------------------------------------
结果说明: reject=True,说明两组之间有显著性差异。

7 计算效应量Correlation family: η2、ω2 (适用于 Correlational data)

神奇的发现:计算方式不同,但是η^2 = ω^2

# η^2 = (F_A X df_A)/(F_A X df_A +df_e)
yitaG = (2.272 * 1)/(2.272 * 1 + 18)
yitaP = (8.86 * 2)/(8.86 * 2 + 18)
yitaGP = (2.5414 * 2)/(2.5414 * 2 + 18)
print('Group的效应量', yitaG)
print('People的效应量',yitaP)
print('GroupxPeople的效应量',yitaGP)
Group的效应量 0.11207576953433307
People的效应量 0.49608062709966405
GroupxPeople的效应量 0.22019858942589288
# ω^2 = sq_A /(sq_A + sq_e)
oumigaG = 0.96/(0.96 + 7.605)
oumigaP = 7.486/(7.486 + 7.605)
oumigaGP = 2.147/(2.147 + 7.605)
print('Group的效应量', oumigaG)
print('People的效应量',oumigaP)
print('GroupxPeople的效应量',oumigaGP)
Group的效应量 0.11208406304728544
People的效应量 0.49605725266715256
GroupxPeople的效应量 0.22015996718621816

2. 双因素方差分析理论和公式

参考:https://zhuanlan.zhihu.com/p/33357167

3. 效应量分析

参考:https://zhuanlan.zhihu.com/p/137779235

这篇关于python实现two way ANOVA的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/440657

相关文章

Python函数作用域示例详解

《Python函数作用域示例详解》本文介绍了Python中的LEGB作用域规则,详细解析了变量查找的四个层级,通过具体代码示例,展示了各层级的变量访问规则和特性,对python函数作用域相关知识感兴趣... 目录一、LEGB 规则二、作用域实例2.1 局部作用域(Local)2.2 闭包作用域(Enclos

Python实现对阿里云OSS对象存储的操作详解

《Python实现对阿里云OSS对象存储的操作详解》这篇文章主要为大家详细介绍了Python实现对阿里云OSS对象存储的操作相关知识,包括连接,上传,下载,列举等功能,感兴趣的小伙伴可以了解下... 目录一、直接使用代码二、详细使用1. 环境准备2. 初始化配置3. bucket配置创建4. 文件上传到os

关于集合与数组转换实现方法

《关于集合与数组转换实现方法》:本文主要介绍关于集合与数组转换实现方法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、Arrays.asList()1.1、方法作用1.2、内部实现1.3、修改元素的影响1.4、注意事项2、list.toArray()2.1、方

使用Python实现可恢复式多线程下载器

《使用Python实现可恢复式多线程下载器》在数字时代,大文件下载已成为日常操作,本文将手把手教你用Python打造专业级下载器,实现断点续传,多线程加速,速度限制等功能,感兴趣的小伙伴可以了解下... 目录一、智能续传:从崩溃边缘抢救进度二、多线程加速:榨干网络带宽三、速度控制:做网络的好邻居四、终端交互

Python中注释使用方法举例详解

《Python中注释使用方法举例详解》在Python编程语言中注释是必不可少的一部分,它有助于提高代码的可读性和维护性,:本文主要介绍Python中注释使用方法的相关资料,需要的朋友可以参考下... 目录一、前言二、什么是注释?示例:三、单行注释语法:以 China编程# 开头,后面的内容为注释内容示例:示例:四

Python中win32包的安装及常见用途介绍

《Python中win32包的安装及常见用途介绍》在Windows环境下,PythonWin32模块通常随Python安装包一起安装,:本文主要介绍Python中win32包的安装及常见用途的相关... 目录前言主要组件安装方法常见用途1. 操作Windows注册表2. 操作Windows服务3. 窗口操作

Python中re模块结合正则表达式的实际应用案例

《Python中re模块结合正则表达式的实际应用案例》Python中的re模块是用于处理正则表达式的强大工具,正则表达式是一种用来匹配字符串的模式,它可以在文本中搜索和匹配特定的字符串模式,这篇文章主... 目录前言re模块常用函数一、查看文本中是否包含 A 或 B 字符串二、替换多个关键词为统一格式三、提

java实现docker镜像上传到harbor仓库的方式

《java实现docker镜像上传到harbor仓库的方式》:本文主要介绍java实现docker镜像上传到harbor仓库的方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录1. 前 言2. 编写工具类2.1 引入依赖包2.2 使用当前服务器的docker环境推送镜像2.2

C++20管道运算符的实现示例

《C++20管道运算符的实现示例》本文简要介绍C++20管道运算符的使用与实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录标准库的管道运算符使用自己实现类似的管道运算符我们不打算介绍太多,因为它实际属于c++20最为重要的

Java easyExcel实现导入多sheet的Excel

《JavaeasyExcel实现导入多sheet的Excel》这篇文章主要为大家详细介绍了如何使用JavaeasyExcel实现导入多sheet的Excel,文中的示例代码讲解详细,感兴趣的小伙伴可... 目录1.官网2.Excel样式3.代码1.官网easyExcel官网2.Excel样式3.代码