python实现two way ANOVA

2023-12-01 09:44
文章标签 python 实现 two way anova

本文主要是介绍python实现two way ANOVA,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 目的:用python实现two way ANOVA 双因素方差分析
    • 1. python代码实现
      • 1 加载python库
      • 2 加载数据
      • 3 统计样本重复次数,均值和方差,绘制箱线图
      • 4 查看people和group是否存在交互效应
      • 5 模型拟合与Two Way ANOVA:双因素方差分析
      • 6 多重比较,post hoc t-tests
      • 7 计算效应量Correlation family: η^2、ω^2 (适用于 Correlational data)
    • 2. 双因素方差分析理论和公式
    • 3. 效应量分析

目的:用python实现two way ANOVA 双因素方差分析

1. python代码实现

在这里插入图片描述

1 加载python库

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from scipy import stats   from statsmodels.formula.api import ols                     # 最小二乘法拟合
from statsmodels.stats.anova import anova_lm                # 方差分析
from statsmodels.stats.multicomp import pairwise_tukeyhsd   # post Hoc t_test

2 加载数据

value(month):治疗2周的各类被试的血糖值
group(PhysicalTherapy):表示有两种治疗方案,sham组(1)和rTMS组(2)
people(PsychiatricTreatment):表示有3种被试,年轻健康组(3)、老年健康组(1)、老年患病组(2)

df = pd.read_excel('data//TMS_demoData1.xlsx')
data = pd.DataFrame(df)
data.head(24)
valuegrouppeople
011.011
19.412
212.513
39.611
49.612
511.513
610.811
79.612
810.513
910.511
1010.812
1112.513
1210.521
1310.822
1410.523
1511.521
1610.522
1711.823
1812.021
1910.522
2011.523
2111.821
2210.222
2311.523

3 统计样本重复次数,均值和方差,绘制箱线图

data.describe()
valuegrouppeople
count24.00000024.00000024.000000
mean10.8916671.5000002.000000
std0.8895120.5107540.834058
min9.4000001.0000001.000000
25%10.5000001.0000001.000000
50%10.8000001.5000002.000000
75%11.5000002.0000003.000000
max12.5000002.0000003.000000
fig, ax = plt.subplots(1,2,figsize=(12,6),dpi=600)  # 1行2列的子图
sns.boxplot(x = 'group', y = 'value', data = data, ax = ax[0])
sns.boxplot(x = 'people', y = 'value', data = data, ax = ax[1])## 可以看出rTMS组的血糖水平sham组的高,因此我们得看这是由于治疗方案引起的还是由于随机误差引起的
## 即从试验结果推断,因素 group 对试验结果有无显著影响,即当 group 取不同水平时试验结果有无显著差别
## 第5步方差分析的结果显示,因素 group 对试验结果无显著影响(p = 0.149),即当 group 取不同水平时试验结果无显著差别

请添加图片描述

4 查看people和group是否存在交互效应

  • 主效应:一个自变量变化时,因变量所出现的变化。
  • 交互效应:反应的是两个或多个自变量对因变量的联合影响,这种影响不能简单的通过自变量的主效应相加获得。
fig, ax = plt.subplots(1,2,figsize=(12,6),dpi=600)  # 1行2列的子图
sns.lineplot(y='value', x = 'people', hue = 'group', palette="tab10", data=data, ax = ax[0])
sns.lineplot(y='value', x = 'group', hue = 'people', palette="tab10", data=data, ax = ax[1])

请添加图片描述

从上图可以看出,people 2和3之间是存在交互效应的,下面可以通过方差分析来检验

5 模型拟合与Two Way ANOVA:双因素方差分析

model = ols('value ~C(group) + C(people) + C(group):C(people)', data = data).fit()
anova_table = anova_lm(model, type = 2)
pd.DataFrame(anova_table)
dfsum_sqmean_sqFPR(>F)
C(group)1.00.9600000.9600002.2721890.149064
C(people)2.07.4858333.7429178.8589740.002096
C(group):C(people)2.02.1475001.0737502.5414200.106623
Residual18.07.6050000.422500NaNNaN

根据上述结果可以发现:

  1. people组是小于0.05的,存在显著性差异。即people因素对指标value有显著性影响。
  2. group和两者的交互效应是大于0.05的,接受假设,不存在显著性差异,不存在交互效应。
  3. 因为people对value存在显著性差异,我们得进行进一步的T检验,查看是那两组之间存在显著性差异。
print(model.summary())
                            OLS Regression Results                            
==============================================================================
Dep. Variable:                  value   R-squared:                       0.582
Model:                            OLS   Adj. R-squared:                  0.466
Method:                 Least Squares   F-statistic:                     5.015
Date:                Thu, 30 Nov 2023   Prob (F-statistic):            0.00473
Time:                        17:55:19   Log-Likelihood:                -20.264
No. Observations:                  24   AIC:                             52.53
Df Residuals:                      18   BIC:                             59.60
Df Model:                           5                                         
Covariance Type:            nonrobust                                         
================================================================================================coef    std err          t      P>|t|      [0.025      0.975]
------------------------------------------------------------------------------------------------
Intercept                       10.4750      0.325     32.231      0.000       9.792      11.158
C(group)[T.2]                    0.9750      0.460      2.121      0.048       0.009       1.941
C(people)[T.2]                  -0.6250      0.460     -1.360      0.191      -1.591       0.341
C(people)[T.3]                   1.2750      0.460      2.774      0.013       0.309       2.241
C(group)[T.2]:C(people)[T.2]    -0.3250      0.650     -0.500      0.623      -1.691       1.041
C(group)[T.2]:C(people)[T.3]    -1.4000      0.650     -2.154      0.045      -2.766      -0.034
==============================================================================
Omnibus:                        1.196   Durbin-Watson:                   2.279
Prob(Omnibus):                  0.550   Jarque-Bera (JB):                1.081
Skew:                          -0.461   Prob(JB):                        0.582
Kurtosis:                       2.518   Cond. No.                         9.77
==============================================================================Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
print(model.params)
# 拟合公式
# Yij = 10.475*G(1)*P(1) + 0.9150*G(2) - 0.625*P(2) + 1.275*P(3) - 0.325*G(2)*P(2) -1.4*G(2)*P(3)
Intercept                       10.475
C(group)[T.2]                    0.975
C(people)[T.2]                  -0.625
C(people)[T.3]                   1.275
C(group)[T.2]:C(people)[T.2]    -0.325
C(group)[T.2]:C(people)[T.3]    -1.400
dtype: float64

曲线拟合出来的实为每一种组合的均值:拟合参数验算
*** 无论是普通线性模型还是广义线性模型,预测的都是自变量x取特定值时因变量y的平均值。
因变量y的实际取值与其平均值之差被称为误差项,而误差的分布很大程度上决定了使用什么模型。

# Yij = 10.475*G(1)*P(1) + 0.9150*G(2) - 0.625*P(2) + 1.275*P(3) - 0.325*G(2)*P(2) -1.4*G(2)*P(3)
# GPxx:实际值
# Y_GPxx:预测值
''' Group = 1,People = 1 这个作为截距,后面的每一种组合要加上Intercept'''
Intercept = (11+9.6+10.8+10.5)/4 ''' Group = 1, People = 2 '''
GP12 = (9.4+9.6+9.6+10.8)/4
Y_GP12 = 10.475 - 0.625''' Group = 1, People = 3 '''
GP13 = (12.5+11.5+10.5+12.5)/4
Y_GP13 = 10.475 + 1.275''' Group = 2, People = 1 '''
GP21 = (10.5+11.5+12+11.8)/4
Y_GP21 = 10.475 + 0.9105''' Group = 2, People = 2 '''
GP22 = (10.8+10.5+10.5+10.2)/4
Y_GP22 = 10.475 + 0.9105 - 0.625 - 0.325''' Group = 2, People = 3 '''
GP23 = (10.5+11.8+11.5+11.5)/4
Y_GP23 = 10.475 + 0.9105 + 1.275 - 1.4print('Intercept:', Intercept)
print('GP12:',GP12, 'Y_GP12:',Y_GP12)
print('GP13:',GP13, 'Y_GP13:',Y_GP13)
print('GP21:',GP21, 'Y_GP21:',Y_GP21)
print('GP22:',GP22, 'Y_GP22:',Y_GP22)
print('GP23:',GP23, 'Y_GP23:',Y_GP23)
Intercept: 10.475000000000001
GP12: 9.850000000000001 Y_GP12: 9.85
GP13: 11.75 Y_GP13: 11.75
GP21: 11.45 Y_GP21: 11.3855
GP22: 10.5 Y_GP22: 10.435500000000001
GP23: 11.325 Y_GP23: 11.2605

6 多重比较,post hoc t-tests

print("people因子不同水平的比较结果:", pairwise_tukeyhsd(data['value'], data['people']))
print("###########################\n")
print("group 因子不同水平的比较结果:", pairwise_tukeyhsd(data['value'], data['group']))print("结果说明: reject=True,说明两组之间有显著性差异。")
people因子不同水平的比较结果: Multiple Comparison of Means - Tukey HSD, FWER=0.05
===================================================
group1 group2 meandiff p-adj   lower  upper  reject
---------------------------------------------------1      2  -0.7875 0.0935 -1.6876 0.1126  False1      3    0.575 0.2635 -0.3251 1.4751  False2      3   1.3625 0.0028  0.4624 2.2626   True
---------------------------------------------------
###########################group 因子不同水平的比较结果: Multiple Comparison of Means - Tukey HSD, FWER=0.05
===================================================
group1 group2 meandiff p-adj   lower  upper  reject
---------------------------------------------------1      2      0.4 0.2803 -0.3495 1.1495  False
---------------------------------------------------
结果说明: reject=True,说明两组之间有显著性差异。

7 计算效应量Correlation family: η2、ω2 (适用于 Correlational data)

神奇的发现:计算方式不同,但是η^2 = ω^2

# η^2 = (F_A X df_A)/(F_A X df_A +df_e)
yitaG = (2.272 * 1)/(2.272 * 1 + 18)
yitaP = (8.86 * 2)/(8.86 * 2 + 18)
yitaGP = (2.5414 * 2)/(2.5414 * 2 + 18)
print('Group的效应量', yitaG)
print('People的效应量',yitaP)
print('GroupxPeople的效应量',yitaGP)
Group的效应量 0.11207576953433307
People的效应量 0.49608062709966405
GroupxPeople的效应量 0.22019858942589288
# ω^2 = sq_A /(sq_A + sq_e)
oumigaG = 0.96/(0.96 + 7.605)
oumigaP = 7.486/(7.486 + 7.605)
oumigaGP = 2.147/(2.147 + 7.605)
print('Group的效应量', oumigaG)
print('People的效应量',oumigaP)
print('GroupxPeople的效应量',oumigaGP)
Group的效应量 0.11208406304728544
People的效应量 0.49605725266715256
GroupxPeople的效应量 0.22015996718621816

2. 双因素方差分析理论和公式

参考:https://zhuanlan.zhihu.com/p/33357167

3. 效应量分析

参考:https://zhuanlan.zhihu.com/p/137779235

这篇关于python实现two way ANOVA的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/440657

相关文章

使用animation.css库快速实现CSS3旋转动画效果

《使用animation.css库快速实现CSS3旋转动画效果》随着Web技术的不断发展,动画效果已经成为了网页设计中不可或缺的一部分,本文将深入探讨animation.css的工作原理,如何使用以及... 目录1. css3动画技术简介2. animation.css库介绍2.1 animation.cs

Java进行日期解析与格式化的实现代码

《Java进行日期解析与格式化的实现代码》使用Java搭配ApacheCommonsLang3和Natty库,可以实现灵活高效的日期解析与格式化,本文将通过相关示例为大家讲讲具体的实践操作,需要的可以... 目录一、背景二、依赖介绍1. Apache Commons Lang32. Natty三、核心实现代

Python文件操作与IO流的使用方式

《Python文件操作与IO流的使用方式》:本文主要介绍Python文件操作与IO流的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、python文件操作基础1. 打开文件2. 关闭文件二、文件读写操作1.www.chinasem.cn 读取文件2. 写

SpringBoot实现接口数据加解密的三种实战方案

《SpringBoot实现接口数据加解密的三种实战方案》在金融支付、用户隐私信息传输等场景中,接口数据若以明文传输,极易被中间人攻击窃取,SpringBoot提供了多种优雅的加解密实现方案,本文将从原... 目录一、为什么需要接口数据加解密?二、核心加解密算法选择1. 对称加密(AES)2. 非对称加密(R

基于Go语言实现Base62编码的三种方式以及对比分析

《基于Go语言实现Base62编码的三种方式以及对比分析》Base62编码是一种在字符编码中使用62个字符的编码方式,在计算机科学中,,Go语言是一种静态类型、编译型语言,它由Google开发并开源,... 目录一、标准库现状与解决方案1. 标准库对比表2. 解决方案完整实现代码(含边界处理)二、关键实现细

使用Python自动化生成PPT并结合LLM生成内容的代码解析

《使用Python自动化生成PPT并结合LLM生成内容的代码解析》PowerPoint是常用的文档工具,但手动设计和排版耗时耗力,本文将展示如何通过Python自动化提取PPT样式并生成新PPT,同时... 目录核心代码解析1. 提取 PPT 样式到 jsON关键步骤:代码片段:2. 应用 JSON 样式到

python通过curl实现访问deepseek的API

《python通过curl实现访问deepseek的API》这篇文章主要为大家详细介绍了python如何通过curl实现访问deepseek的API,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编... API申请和充值下面是deepeek的API网站https://platform.deepsee

SpringBoot实现二维码生成的详细步骤与完整代码

《SpringBoot实现二维码生成的详细步骤与完整代码》如今,二维码的应用场景非常广泛,从支付到信息分享,二维码都扮演着重要角色,SpringBoot是一个非常流行的Java基于Spring框架的微... 目录一、环境搭建二、创建 Spring Boot 项目三、引入二维码生成依赖四、编写二维码生成代码五

Python Selenium动态渲染页面和抓取的使用指南

《PythonSelenium动态渲染页面和抓取的使用指南》在Web数据采集领域,动态渲染页面已成为现代网站的主流形式,本文将从技术原理,环境配置,核心功能系统讲解Selenium在Python动态... 目录一、Selenium技术架构解析二、环境搭建与基础配置1. 组件安装2. 驱动配置3. 基础操作模

MyBatisX逆向工程的实现示例

《MyBatisX逆向工程的实现示例》本文主要介绍了MyBatisX逆向工程的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学... 目录逆向工程准备好数据库、表安装MyBATisX插件项目连接数据库引入依赖pom.XML生成实体类、