线性方程组的迭代法(Jacobi 迭代法和Gauss-Seidel 迭代法) C++代码

2023-12-01 09:01

本文主要是介绍线性方程组的迭代法(Jacobi 迭代法和Gauss-Seidel 迭代法) C++代码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Jacobi 迭代法

#include <iostream>
#include <cmath>
#include <vector>using namespace std;// 定义方程组的系数矩阵和常数向量
vector<vector<double>> A = {{20, 2, 3},{1, 8, 1},{2, -3, 15}};
vector<double> b = {24, 12, 30};// 定义迭代次数和精度阈值
int maxIterations = 100;
double epsilon = 5e-5;
int iterations = 0;
// 雅可比迭代函数
vector<double> jacobiIteration(const vector<vector<double>>& A, const vector<double>& b, const vector<double>& x0) {int n = A.size();vector<double> x(x0);  // 初始解的近似值for (int k = 0; k < maxIterations; k++) {iterations++;vector<double> x_new(n, 0);for (int i = 0; i < n; i++) {double sum = 0;for (int j = 0; j < n; j++) {if (j != i) {sum += A[i][j] * x[j];}}x_new[i] = (b[i] - sum) / A[i][i];}// 判断是否满足终止条件double diff = 0;for (int i = 0; i < n; i++) {diff += abs(x_new[i] - x[i]);}if (diff < epsilon) {break;}// 更新解的近似值x = x_new;}return x;
}int main() {int n = A.size();vector<double> x0(n, 0);  // 初始解的近似值vector<double> x = jacobiIteration(A, b, x0);cout << "Solution: \n";for (int i = 0; i < n; i++) {cout << "x" << i+1 << " = " << x[i] << "\n";}cout << endl;cout << "iterations = " << iterations << '\n';return 0;
}

Gauss-Seidel 迭代法

#include <iostream>
#include <cmath>#define N 3 // 线性方程组的未知数个数
#define MAX_ITERATIONS 100 // 最大迭代次数
#define EPSILON 0.00005 // 迭代停止的精度void gaussSeidel(double coef[N][N], double b[N], double x[N]) {double x_new[N];// 初始化迭代结果for (int i = 0; i < N; i++) {x[i] = 0;}int iterations = 0;double error = EPSILON + 1;while (error > EPSILON && iterations < MAX_ITERATIONS) {for (int i = 0; i < N; i++) {double sum1 = 0;for (int j = 0; j < i; j++) {sum1 += coef[i][j] * x_new[j];}double sum2 = 0;for (int j = i + 1; j < N; j++) {sum2 += coef[i][j] * x[j];}x_new[i] = (b[i] - sum1 - sum2) / coef[i][i];}error = 0;for (int i = 0; i < N; i++) {error += std::abs(x_new[i] - x[i]);x[i] = x_new[i];}iterations++;}if (iterations < MAX_ITERATIONS) {std::cout << "Converged in " << iterations << " iterations." << std::endl;} else {std::cout << "Did not converge within the maximum number of iterations." << std::endl;}
}int main() {double coef[N][N] = {{20, 2, 3}, {1, 8, 1}, {2, -3, 15}};double b[N] = {24, 12, 30};double x[N];gaussSeidel(coef, b, x);std::cout << "Solution:" << std::endl;for (int i = 0; i < N; i++) {std::cout << "x" << i << " = " << x[i] << std::endl;}return 0;
}

Jacobi 迭代法与Gauss-Seidel 迭代法的比较

#include <iostream>
#include <vector>
#include <cmath>#define N 3 // 线性方程组的未知数个数
#define MAX_ITERATIONS 100 // 最大迭代次数
#define EPSILON 0.00005 // 迭代停止的精度// 高斯-赛德尔迭代法
int gaussSeidel(const std::vector<std::vector<double>>& A, const std::vector<double>& b, std::vector<double>& x) {std::vector<double> x_new(N);// 初始化迭代结果for (int i = 0; i < N; i++) {x[i] = 0;}int iterations = 0;double error = EPSILON + 1;while (error > EPSILON && iterations < MAX_ITERATIONS) {for (int i = 0; i < N; i++) {double sum1 = 0;for (int j = 0; j < i; j++) {sum1 += A[i][j] * x_new[j];}double sum2 = 0;for (int j = i + 1; j < N; j++) {sum2 += A[i][j] * x[j];}x_new[i] = (b[i] - sum1 - sum2) / A[i][i];}error = 0;for (int i = 0; i < N; i++) {error += std::abs(x_new[i] - x[i]);x[i] = x_new[i];}iterations++;}return iterations;
}// 雅可比迭代法
int jacobi(const std::vector<std::vector<double>>& A, const std::vector<double>& b, std::vector<double>& x) {std::vector<double> x_new(N);// 初始化迭代结果for (int i = 0; i < N; i++) {x[i] = 0;}int iterations = 0;double error = EPSILON + 1;while (error > EPSILON && iterations < MAX_ITERATIONS) {for (int i = 0; i < N; i++) {double sum = 0;for (int j = 0; j < N; j++) {if (j != i) {sum += A[i][j] * x[j];}}x_new[i] = (b[i] - sum) / A[i][i];}error = 0;for (int i = 0; i < N; i++) {error += std::abs(x_new[i] - x[i]);x[i] = x_new[i];}iterations++;}return iterations;
}int main() {std::vector<std::vector<double>> A = {{20, 2, 3}, {1, 8, 1}, {2, -3, 15}};std::vector<double> b = {24, 12, 30};std::vector<double> x(N);int gaussSeidelIterations = gaussSeidel(A, b, x);int jacobiIterations = jacobi(A, b, x);std::cout << "Gauss-Seidel iterations: " << gaussSeidelIterations << std::endl;std::cout << "Jacobi iterations: " << jacobiIterations << std::endl;return 0;
}

这篇关于线性方程组的迭代法(Jacobi 迭代法和Gauss-Seidel 迭代法) C++代码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/440537

相关文章

C++右移运算符的一个小坑及解决

《C++右移运算符的一个小坑及解决》文章指出右移运算符处理负数时左侧补1导致死循环,与除法行为不同,强调需注意补码机制以正确统计二进制1的个数... 目录我遇到了这么一个www.chinasem.cn函数由此可以看到也很好理解总结我遇到了这么一个函数template<typename T>unsigned

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

Redis实现高效内存管理的示例代码

《Redis实现高效内存管理的示例代码》Redis内存管理是其核心功能之一,为了高效地利用内存,Redis采用了多种技术和策略,如优化的数据结构、内存分配策略、内存回收、数据压缩等,下面就来详细的介绍... 目录1. 内存分配策略jemalloc 的使用2. 数据压缩和编码ziplist示例代码3. 优化的

Python 基于http.server模块实现简单http服务的代码举例

《Python基于http.server模块实现简单http服务的代码举例》Pythonhttp.server模块通过继承BaseHTTPRequestHandler处理HTTP请求,使用Threa... 目录测试环境代码实现相关介绍模块简介类及相关函数简介参考链接测试环境win11专业版python

Python从Word文档中提取图片并生成PPT的操作代码

《Python从Word文档中提取图片并生成PPT的操作代码》在日常办公场景中,我们经常需要从Word文档中提取图片,并将这些图片整理到PowerPoint幻灯片中,手动完成这一任务既耗时又容易出错,... 目录引言背景与需求解决方案概述代码解析代码核心逻辑说明总结引言在日常办公场景中,我们经常需要从 W

深入解析C++ 中std::map内存管理

《深入解析C++中std::map内存管理》文章详解C++std::map内存管理,指出clear()仅删除元素可能不释放底层内存,建议用swap()与空map交换以彻底释放,针对指针类型需手动de... 目录1️、基本清空std::map2️、使用 swap 彻底释放内存3️、map 中存储指针类型的对象

使用Spring Cache本地缓存示例代码

《使用SpringCache本地缓存示例代码》缓存是提高应用程序性能的重要手段,通过将频繁访问的数据存储在内存中,可以减少数据库访问次数,从而加速数据读取,:本文主要介绍使用SpringCac... 目录一、Spring Cache简介核心特点:二、基础配置1. 添加依赖2. 启用缓存3. 缓存配置方案方案