scikit-opt几种数值模拟退火的代码示例,和参数详解,以及基础模拟退火的原理代码示例

本文主要是介绍scikit-opt几种数值模拟退火的代码示例,和参数详解,以及基础模拟退火的原理代码示例,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

python基础模拟退火原理示例

模拟退火的特性决定了一般可以用于算法的调参,相比较遗传算法来说,普遍更快一些,但是也更容易陷入局部最优。相对来说,遗传算法的更新解机制是在最每一个局部最优解附近盘旋游荡,则更容易达到全局最优,但是计算量则更大。

# -*- encoding: utf-8 -*-
'''
@File    :   simulate_anneal.py
@Time    :   2020/10/28 12:45:28
@Author  :   DataMagician 
@Version :   1.0
@Contact :   408903228@qq.com
'''# here put the import libimport numpy as np
import matplotlib.pyplot as plt# ### $ 根据热力学的原理,在温度为T时,出现能量差为dE的降温的概率为P(dE),表示为:$
# # $ P(dE) = exp( dE/(k*T) ) $
# ### $ 其中k是一个常数,exp表示自然指数,且dE<0(温度总是降低的)。这条公式指明了 $# # 单变量退火
def PDE(DE, T, k=1):'''Args:DE:t:k:Returns:'''return np.exp((DE) / (k * T))def DE_function(new, old):'''Args:new:old:Returns:'''return new - olddef jump(DE, T, k=1):'''Args:DE:T:k:Returns:'''return PDE(DE, T, k) > np.random.rand() and 0 or 1def simulate_anneal(func,parameter={"T": 1, #系统的温度,系统初始应该要处于一个高温的状态 初始温度越高,且马尔科夫链越长,算法搜索越充分,得到全局最优解的可能性越大,但这也意味着需要耗费更多的计算时间"T_min": 0, #温度的下限,若温度T达到T_min,则停止搜索"r": 0.0001, #用于控制降温的快慢 值越小T更新越快,退出越快"expr": 0, #初始解"jump_max": np.inf,#最大回炉停留次数"k":1 # k越小越不容易退出}):'''Args:func:parameter:Returns:'''path, funcpath = [], []T = parameter["T"]  # 系统温度,初时应在高温T_min = parameter["T_min"]  # 最小温度值r = parameter["r"]  # 降温速率counter = 0expr = parameter["expr"]  # 假设初解jump_max = parameter["jump_max"]  # 最大冷却值jump_counter = 0k = parameter["k"]while T > T_min:counter += 1new_expr = func.__next__()  # 迭代新解funcpath.append(new_expr)DE = DE_function(new_expr , expr)if DE <= 0:# 如果新解比假设初解或者上一个达标解要小,就更新解expr = new_expr# 跳出域值更新为0 jump_counter = 0elif DE > 0:# 如果新解比假设初解或者上一个达标解要大,就不更新解expr = exprif jump(DE, T,k):# 每更新一次T更新一次T *= rjump_counter += 1if jump_counter > jump_max:print("最大回炉冷却次数:", jump_counter)return expr, path, funcpathpath.append(expr)print("{}{}{}{}{}{}{}{}".format('系统温度:', T, ' 新状态:', expr, ' 迭代轮次:',counter, ' DE:', DE))return expr, path, funcpathif __name__ == "__main__":def f():  # 待优化最小函数'''Returns:'''for x in np.random.randn(1000):yield xexpr, path, funcpath = simulate_anneal(f(),parameter={"T": 1,"T_min": 0,"r": 0.4,"expr": 0,"jump_max": 1000,"k":0.000001})print(expr)plt.figure(figsize=(16, 9))  # %%plt.plot(path, c='g')plt.plot(funcpath, c='r')plt.show()plt.close()

请添加图片描述

快速模拟退火
from sko.SA import SAFast
import matplotlib.pyplot as plt
import pandas as pddef demo_func(x):return x[0] ** 2 + (x[1] - 0.05) ** 2 + x[2] ** 2sa = SAFast(func=demo_func, x0=[1, 1, 1] # 初始x解,初始解越大则越难到达最小值,越小则越容易错过, T_max=1 #系统的温度,系统初始应该要处于一个高温的状态 初始温度越高,且马尔科夫链越长,算法搜索越充分,得到全局最优解的可能性越大,但这也意味着需要耗费更多的计算时间, T_min=1e-9  #温度的下限,若温度T达到T_min,则停止搜索, L=300 #最大迭代次数,每个温度下的迭代次数(又称链长), max_stay_counter=100 # 最大冷却停留计数器,保证快速退出,如果 best_y 在最大停留计数器次数(也称冷却时间)内保持不变,则停止运行,lb = [-1,1,-1] #x的下限,ub = [2,3,4] #x的上限#,hop = [3,2,1] # x 的上下限最大差值 hop=ub-lb ,m = 1 # 0-正无穷,越大,越容易冷却退出,n = 1 # # 0-正无穷,越大,越不容易冷却退出,quench = 1 # 淬火指数,0-正无穷,越小则越慢,但是越能求出最小,越大则越快,但是容易陷入局部最优)
best_x, best_y = sa.run()
print('best_x:', best_x, 'best_y:', best_y,"y_history:",len(sa.best_y_history),sa.iter_cycle)
plt.plot(pd.DataFrame(sa.best_y_history).cummin(axis=0))
plt.show()

请添加图片描述

纯数值模拟退火
from sko.SA import SimulatedAnnealingValue
import matplotlib.pyplot as plt
import pandas as pddef demo_func(x):return x[0] ** 2 + (x[1] - 0.05) ** 2 + x[2] ** 2sa = SimulatedAnnealingValue(func=demo_func, x0=[1, 1, 1] # 初始x解,初始解越大则越难到达最小值,越小则越容易错过, T_max=1 #系统的温度,系统初始应该要处于一个高温的状态 初始温度越高,且马尔科夫链越长,算法搜索越充分,得到全局最优解的可能性越大,但这也意味着需要耗费更多的计算时间, T_min=1e-9  #温度的下限,若温度T达到T_min,则停止搜索, L=300 #最大迭代次数,每个温度下的迭代次数(又称链长), max_stay_counter=100000 # 冷却停留计数器,如果 best_y 在最大停留计数器次数(也称冷却时间)内保持不变,则停止运行,lb = [-1,1,-1] #x的下限,ub = [2,3,4] #x的上限#,hop = [3,2,1] # x 的上下限最大差值 hop=ub-lb ,learn_rate = 0.0001 # 学习率,用于控制降温的快慢 值越小T更新越快,退出越快)
best_x, best_y = sa.run()
print('best_x:', best_x, 'best_y:', best_y,"y_history:",len(sa.best_y_history))
plt.plot(pd.DataFrame(sa.best_y_history).cummin(axis=0))
plt.show()

请添加图片描述

柯西模拟退火
from sko.SA import SACauchy
import matplotlib.pyplot as plt
import pandas as pddef demo_func(x):return x[0] ** 2 + (x[1] - 0.05) ** 2 + x[2] ** 2sa = SACauchy(func=demo_func, x0=[1, 1, 1] # 初始x解,初始解越大则越难到达最小值,越小则越容易错过, T_max=1 #系统的温度,系统初始应该要处于一个高温的状态 初始温度越高,且马尔科夫链越长,算法搜索越充分,得到全局最优解的可能性越大,但这也意味着需要耗费更多的计算时间, T_min=1e-9  #温度的下限,若温度T达到T_min,则停止搜索, L=300 #最大迭代次数,每个温度下的迭代次数(又称链长), max_stay_counter=100 # 冷却停留计数器,如果 best_y 在最大停留计数器次数(也称冷却时间)内保持不变,则停止运行,lb = [-1,1,-1] #x的下限,ub = [2,3,4] #x的上限#,hop = [3,2,1] # x 的上下限最大差值 hop=ub-lb ,learn_rate = 0.1 # 学习率,用于控制降温的快慢 值越大T更新越快,退出越快)
best_x, best_y = sa.run()
print('best_x:', best_x, 'best_y:', best_y,"y_history:",len(sa.best_y_history))
plt.plot(pd.DataFrame(sa.best_y_history).cummin(axis=0))
plt.show()

请添加图片描述

玻尔兹曼模拟退火
from sko.SA import SABoltzmann
import matplotlib.pyplot as plt
import pandas as pddef demo_func(x):return x[0] ** 2 + (x[1] - 0.05) ** 2 + x[2] ** 2sa = SABoltzmann(func=demo_func, x0=[1, 1, 1] # 初始x解,初始解越大则越难到达最小值,越小则越容易错过, T_max=1 #系统的温度,系统初始应该要处于一个高温的状态 初始温度越高,且马尔科夫链越长,算法搜索越充分,得到全局最优解的可能性越大,但这也意味着需要耗费更多的计算时间, T_min=1e-9  #温度的下限,若温度T达到T_min,则停止搜索, L=300 #最大迭代次数,每个温度下的迭代次数(又称链长), max_stay_counter=100 # 冷却停留计数器,如果 best_y 在最大停留计数器次数(也称冷却时间)内保持不变,则停止运行# ,lb = [-1,1,-1] #x的下限# ,ub = [2,3,4] #x的上限,hop = [3,2,1] # x 的上下限最大差值 hop=ub-lb ,learn_rate = 0.1 # 学习率,用于控制降温的快慢 值越大T更新越快,退出越快)
best_x, best_y = sa.run()
print('best_x:', best_x, 'best_y:', best_y,"y_history:",len(sa.best_y_history))
plt.plot(pd.DataFrame(sa.best_y_history).cummin(axis=0))
plt.show()

请添加图片描述

这篇关于scikit-opt几种数值模拟退火的代码示例,和参数详解,以及基础模拟退火的原理代码示例的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/439828

相关文章

C++11范围for初始化列表auto decltype详解

《C++11范围for初始化列表autodecltype详解》C++11引入auto类型推导、decltype类型推断、统一列表初始化、范围for循环及智能指针,提升代码简洁性、类型安全与资源管理效... 目录C++11新特性1. 自动类型推导auto1.1 基本语法2. decltype3. 列表初始化3

Spring Security 单点登录与自动登录机制的实现原理

《SpringSecurity单点登录与自动登录机制的实现原理》本文探讨SpringSecurity实现单点登录(SSO)与自动登录机制,涵盖JWT跨系统认证、RememberMe持久化Token... 目录一、核心概念解析1.1 单点登录(SSO)1.2 自动登录(Remember Me)二、代码分析三、

SQL Server 中的 WITH (NOLOCK) 示例详解

《SQLServer中的WITH(NOLOCK)示例详解》SQLServer中的WITH(NOLOCK)是一种表提示,等同于READUNCOMMITTED隔离级别,允许查询在不获取共享锁的情... 目录SQL Server 中的 WITH (NOLOCK) 详解一、WITH (NOLOCK) 的本质二、工作

Linux系统中查询JDK安装目录的几种常用方法

《Linux系统中查询JDK安装目录的几种常用方法》:本文主要介绍Linux系统中查询JDK安装目录的几种常用方法,方法分别是通过update-alternatives、Java命令、环境变量及目... 目录方法 1:通过update-alternatives查询(推荐)方法 2:检查所有已安装的 JDK方

springboot自定义注解RateLimiter限流注解技术文档详解

《springboot自定义注解RateLimiter限流注解技术文档详解》文章介绍了限流技术的概念、作用及实现方式,通过SpringAOP拦截方法、缓存存储计数器,结合注解、枚举、异常类等核心组件,... 目录什么是限流系统架构核心组件详解1. 限流注解 (@RateLimiter)2. 限流类型枚举 (

Java Thread中join方法使用举例详解

《JavaThread中join方法使用举例详解》JavaThread中join()方法主要是让调用改方法的thread完成run方法里面的东西后,在执行join()方法后面的代码,这篇文章主要介绍... 目录前言1.join()方法的定义和作用2.join()方法的三个重载版本3.join()方法的工作原

MySQL CTE (Common Table Expressions)示例全解析

《MySQLCTE(CommonTableExpressions)示例全解析》MySQL8.0引入CTE,支持递归查询,可创建临时命名结果集,提升复杂查询的可读性与维护性,适用于层次结构数据处... 目录基本语法CTE 主要特点非递归 CTE简单 CTE 示例多 CTE 示例递归 CTE基本递归 CTE 结

Spring AI使用tool Calling和MCP的示例详解

《SpringAI使用toolCalling和MCP的示例详解》SpringAI1.0.0.M6引入ToolCalling与MCP协议,提升AI与工具交互的扩展性与标准化,支持信息检索、行动执行等... 目录深入探索 Spring AI聊天接口示例Function CallingMCPSTDIOSSE结束语

C语言进阶(预处理命令详解)

《C语言进阶(预处理命令详解)》文章讲解了宏定义规范、头文件包含方式及条件编译应用,强调带参宏需加括号避免计算错误,头文件应声明函数原型以便主函数调用,条件编译通过宏定义控制代码编译,适用于测试与模块... 目录1.宏定义1.1不带参宏1.2带参宏2.头文件的包含2.1头文件中的内容2.2工程结构3.条件编

go动态限制并发数量的实现示例

《go动态限制并发数量的实现示例》本文主要介绍了Go并发控制方法,通过带缓冲通道和第三方库实现并发数量限制,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录带有缓冲大小的通道使用第三方库其他控制并发的方法因为go从语言层面支持并发,所以面试百分百会问到