【管理运筹学】背诵手册(六)| 图与网络分析(最大流问题,最小费用最大流问题)

本文主要是介绍【管理运筹学】背诵手册(六)| 图与网络分析(最大流问题,最小费用最大流问题),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

六、图与网络分析

最大流问题

最大流问题的数学规划模型为: max ⁡ v = f 12 + f 13 { f 12 + f 13 − f 57 − f 67 = 0 f 13 + f 23 = f 34 + f 35 . . . 0 ≤ f i j ≤ c i j \max v=f_{12}+f_{13}\\ \begin{cases} f_{12}+f_{13}-f_{57}-f_{67}=0 \\ f_{13}+f_{23}=f_{34}+f_{35} \\ ...\\ 0\leq f_{ij}\leq c_{ij} \end{cases} maxv=f12+f13 f12+f13f57f67=0f13+f23=f34+f35...0fijcij 第一个约束表示从起点流出的流量等于流入终点的流量;最后一个为容量限制条件;中间的约束为中间点的平衡条件。

满足容量限制条件和平衡条件(起点、终点和中间点)的网络流称为可行流,可行流总是存在的,如零流。

定义网络 G G G 中的一条初等链 μ \mu μ(所有顶点均不相同),方向为从起点到终点,若链上有弧与 μ \mu μ 方向一致,称为前向弧;若有弧与 μ \mu μ 的方向相反,称为后向弧。网络中 f i j = c i j f_{ij}=c_{ij} fij=cij 的弧称为饱和弧 f i j < c i j f_{ij}<c_{ij} fij<cij 的弧称为非饱和弧, f i j = 0 f_{ij}=0 fij=0 的弧称为零流弧

若某条链中所有前向弧非饱和,后向弧非零,称其为一条增广链

可行流为最大流的充要条件是不存在增广链。

从起点 v s v_s vs 到终点 v t v_t vt 的最大流的流量,等于分离 v s , v t v_s,v_t vs,vt 的最小截集的容量。

寻找最大流的标号法,称为 2F 算法。可分为两个过程,一是标号过程,二是调整过程。

标号过程先给起点标上 ( 0 , + ∞ ) (0,+\infty) (0,+) ,若在前向弧 ( v i , v j ) (v_i,v_j) (vi,vj) 上, f i j < c i j f_{ij}<c_{ij} fij<cij ,则给 v j v_j vj 标号 ( v s , l ( v j ) ) (v_s,l(v_j)) (vs,l(vj)) ,其中 l ( v j ) = min ⁡ { l ( v i ) , c i j − f i j } l(v_j)=\min\{l(v_i),c_{ij}-f_{ij}\} l(vj)=min{l(vi),cijfij} ;若在后向弧 ( v j , v i ) (v_j,v_i) (vj,vi) 上, f i j > 0 f_{ij}>0 fij>0 ,则给 v j v_j vj 标号 ( − v i , l ( v j ) ) (-v_i,l(v_j)) (vi,l(vj)) ,其中 l ( ( v j ) = min ⁡ { l ( v i ) , f i j } l((v_j)=\min\{l(v_i),f_{ij}\} l((vj)=min{l(vi),fij}

调整过程的调整量为终点的标号,令前向弧加上这个调整量,后向弧减去这个调整量。

当出现有多个收发点时,可以虚拟一个总发点和总收点或把所有收发点看成一个整体,先解决外部的流量分配,再解决整体内部的流量分配。当网络为无向图时,可以考虑用枚举法用最小截求最大流。标准的最大流问题应只有弧有容量限制,当出现某个节点也有容量限制时,应进行转换,将其分为两个节点 λ , μ \lambda,\mu λ,μ 。原来流入的弧全部连接到 λ \lambda λ ,原来流出的点全部从 μ \mu μ 节点流出。

最小费用流

链的费用为链中前向弧的费用减去后向弧的费用。所有增广链中费用最小的链称为最小费用增广链

定理:若 f f f 是流量为 V ( f ) V(f) V(f) 的最小费用流, μ \mu μ 是关于 f f f 的从 v s v_s vs v t v_t vt 的一条最小费用增广链,则 f f f 经过 μ \mu μ 调整流量后得到新的可行流 f ′ f' f f ′ f' f 一定是流量为 V ( f ) + θ V(f)+\theta V(f)+θ 的可行流中的最小费用流。

因此我们可以从某个初始的最小费用可行流(一般为零流)开始,寻找最小费用增广链,然后按照最大流的标号法,不断调整到目标流量。

初始的可行流好找,题目给了就用题目的,没给就用零流。那最小费用增广链怎么找?如果把每条弧的费用看成权,这就相当于求起点到终点的最短路。但是由于增广链中可能还有后向弧,无法直接利用最短路算法,因此需要构造一个有向网络 L ( f ) L(f) L(f)

构造的方法为:顶点仍然是原网络中的顶点,原来的每条弧变成两个方向相反的弧,正向弧如果非饱和,权重为费用 w i j w_{ij} wij ,否则为无穷;后向弧如果非零,权重为 − w i j -w_{ij} wij ,否则为无穷。而权重为无穷的弧我们一般会省略。

根据初始可行流,我们构造一个网络,找起终点的最短路,在这条最小费用增广链上按照最大流算法调整,得到新流。根据新流又可以构造网络,如此循环。当出现找不到最短路时,说明已经达到最大流,如果此时的流量仍然小于目标流量,说明不存在流量为目标流量的最小费用流。

最小费用最大流

此时没有目标流量的要求,因此要一直寻找最短路,直到找不到为止。

这篇关于【管理运筹学】背诵手册(六)| 图与网络分析(最大流问题,最小费用最大流问题)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/439460

相关文章

IDEA和GIT关于文件中LF和CRLF问题及解决

《IDEA和GIT关于文件中LF和CRLF问题及解决》文章总结:因IDEA默认使用CRLF换行符导致Shell脚本在Linux运行报错,需在编辑器和Git中统一为LF,通过调整Git的core.aut... 目录问题描述问题思考解决过程总结问题描述项目软件安装shell脚本上git仓库管理,但拉取后,上l

Linux创建服务使用systemctl管理详解

《Linux创建服务使用systemctl管理详解》文章指导在Linux中创建systemd服务,设置文件权限为所有者读写、其他只读,重新加载配置,启动服务并检查状态,确保服务正常运行,关键步骤包括权... 目录创建服务 /usr/lib/systemd/system/设置服务文件权限:所有者读写js,其他

idea npm install很慢问题及解决(nodejs)

《ideanpminstall很慢问题及解决(nodejs)》npm安装速度慢可通过配置国内镜像源(如淘宝)、清理缓存及切换工具解决,建议设置全局镜像(npmconfigsetregistryht... 目录idea npm install很慢(nodejs)配置国内镜像源清理缓存总结idea npm in

pycharm跑python项目易出错的问题总结

《pycharm跑python项目易出错的问题总结》:本文主要介绍pycharm跑python项目易出错问题的相关资料,当你在PyCharm中运行Python程序时遇到报错,可以按照以下步骤进行排... 1. 一定不要在pycharm终端里面创建环境安装别人的项目子模块等,有可能出现的问题就是你不报错都安装

idea突然报错Malformed \uxxxx encoding问题及解决

《idea突然报错Malformeduxxxxencoding问题及解决》Maven项目在切换Git分支时报错,提示project元素为描述符根元素,解决方法:删除Maven仓库中的resolv... 目www.chinasem.cn录问题解决方式总结问题idea 上的 maven China编程项目突然报错,是

Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题

《Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题》在爬虫工程里,“HTTPS”是绕不开的话题,HTTPS为传输加密提供保护,同时也给爬虫带来证书校验、... 目录一、核心问题与优先级检查(先问三件事)二、基础示例:requests 与证书处理三、高并发选型:

在Node.js中使用.env文件管理环境变量的全过程

《在Node.js中使用.env文件管理环境变量的全过程》Node.js应用程序通常依赖于环境变量来管理敏感信息或配置设置,.env文件已经成为一种流行的本地管理这些变量的方法,本文将探讨.env文件... 目录引言为什么使php用 .env 文件 ?如何在 Node.js 中使用 .env 文件最佳实践引

前端导出Excel文件出现乱码或文件损坏问题的解决办法

《前端导出Excel文件出现乱码或文件损坏问题的解决办法》在现代网页应用程序中,前端有时需要与后端进行数据交互,包括下载文件,:本文主要介绍前端导出Excel文件出现乱码或文件损坏问题的解决办法,... 目录1. 检查后端返回的数据格式2. 前端正确处理二进制数据方案 1:直接下载(推荐)方案 2:手动构造

Python绘制TSP、VRP问题求解结果图全过程

《Python绘制TSP、VRP问题求解结果图全过程》本文介绍用Python绘制TSP和VRP问题的静态与动态结果图,静态图展示路径,动态图通过matplotlib.animation模块实现动画效果... 目录一、静态图二、动态图总结【代码】python绘制TSP、VRP问题求解结果图(包含静态图与动态图

MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决

《MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决》MyBatis默认开启一级缓存,同一事务中循环调用查询方法时会重复使用缓存数据,导致获取的序列主键值均为1,... 目录问题原因解决办法如果是存储过程总结问题myBATis有如下代码获取序列作为主键IdMappe