【管理运筹学】背诵手册(六)| 图与网络分析(最大流问题,最小费用最大流问题)

本文主要是介绍【管理运筹学】背诵手册(六)| 图与网络分析(最大流问题,最小费用最大流问题),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

六、图与网络分析

最大流问题

最大流问题的数学规划模型为: max ⁡ v = f 12 + f 13 { f 12 + f 13 − f 57 − f 67 = 0 f 13 + f 23 = f 34 + f 35 . . . 0 ≤ f i j ≤ c i j \max v=f_{12}+f_{13}\\ \begin{cases} f_{12}+f_{13}-f_{57}-f_{67}=0 \\ f_{13}+f_{23}=f_{34}+f_{35} \\ ...\\ 0\leq f_{ij}\leq c_{ij} \end{cases} maxv=f12+f13 f12+f13f57f67=0f13+f23=f34+f35...0fijcij 第一个约束表示从起点流出的流量等于流入终点的流量;最后一个为容量限制条件;中间的约束为中间点的平衡条件。

满足容量限制条件和平衡条件(起点、终点和中间点)的网络流称为可行流,可行流总是存在的,如零流。

定义网络 G G G 中的一条初等链 μ \mu μ(所有顶点均不相同),方向为从起点到终点,若链上有弧与 μ \mu μ 方向一致,称为前向弧;若有弧与 μ \mu μ 的方向相反,称为后向弧。网络中 f i j = c i j f_{ij}=c_{ij} fij=cij 的弧称为饱和弧 f i j < c i j f_{ij}<c_{ij} fij<cij 的弧称为非饱和弧, f i j = 0 f_{ij}=0 fij=0 的弧称为零流弧

若某条链中所有前向弧非饱和,后向弧非零,称其为一条增广链

可行流为最大流的充要条件是不存在增广链。

从起点 v s v_s vs 到终点 v t v_t vt 的最大流的流量,等于分离 v s , v t v_s,v_t vs,vt 的最小截集的容量。

寻找最大流的标号法,称为 2F 算法。可分为两个过程,一是标号过程,二是调整过程。

标号过程先给起点标上 ( 0 , + ∞ ) (0,+\infty) (0,+) ,若在前向弧 ( v i , v j ) (v_i,v_j) (vi,vj) 上, f i j < c i j f_{ij}<c_{ij} fij<cij ,则给 v j v_j vj 标号 ( v s , l ( v j ) ) (v_s,l(v_j)) (vs,l(vj)) ,其中 l ( v j ) = min ⁡ { l ( v i ) , c i j − f i j } l(v_j)=\min\{l(v_i),c_{ij}-f_{ij}\} l(vj)=min{l(vi),cijfij} ;若在后向弧 ( v j , v i ) (v_j,v_i) (vj,vi) 上, f i j > 0 f_{ij}>0 fij>0 ,则给 v j v_j vj 标号 ( − v i , l ( v j ) ) (-v_i,l(v_j)) (vi,l(vj)) ,其中 l ( ( v j ) = min ⁡ { l ( v i ) , f i j } l((v_j)=\min\{l(v_i),f_{ij}\} l((vj)=min{l(vi),fij}

调整过程的调整量为终点的标号,令前向弧加上这个调整量,后向弧减去这个调整量。

当出现有多个收发点时,可以虚拟一个总发点和总收点或把所有收发点看成一个整体,先解决外部的流量分配,再解决整体内部的流量分配。当网络为无向图时,可以考虑用枚举法用最小截求最大流。标准的最大流问题应只有弧有容量限制,当出现某个节点也有容量限制时,应进行转换,将其分为两个节点 λ , μ \lambda,\mu λ,μ 。原来流入的弧全部连接到 λ \lambda λ ,原来流出的点全部从 μ \mu μ 节点流出。

最小费用流

链的费用为链中前向弧的费用减去后向弧的费用。所有增广链中费用最小的链称为最小费用增广链

定理:若 f f f 是流量为 V ( f ) V(f) V(f) 的最小费用流, μ \mu μ 是关于 f f f 的从 v s v_s vs v t v_t vt 的一条最小费用增广链,则 f f f 经过 μ \mu μ 调整流量后得到新的可行流 f ′ f' f f ′ f' f 一定是流量为 V ( f ) + θ V(f)+\theta V(f)+θ 的可行流中的最小费用流。

因此我们可以从某个初始的最小费用可行流(一般为零流)开始,寻找最小费用增广链,然后按照最大流的标号法,不断调整到目标流量。

初始的可行流好找,题目给了就用题目的,没给就用零流。那最小费用增广链怎么找?如果把每条弧的费用看成权,这就相当于求起点到终点的最短路。但是由于增广链中可能还有后向弧,无法直接利用最短路算法,因此需要构造一个有向网络 L ( f ) L(f) L(f)

构造的方法为:顶点仍然是原网络中的顶点,原来的每条弧变成两个方向相反的弧,正向弧如果非饱和,权重为费用 w i j w_{ij} wij ,否则为无穷;后向弧如果非零,权重为 − w i j -w_{ij} wij ,否则为无穷。而权重为无穷的弧我们一般会省略。

根据初始可行流,我们构造一个网络,找起终点的最短路,在这条最小费用增广链上按照最大流算法调整,得到新流。根据新流又可以构造网络,如此循环。当出现找不到最短路时,说明已经达到最大流,如果此时的流量仍然小于目标流量,说明不存在流量为目标流量的最小费用流。

最小费用最大流

此时没有目标流量的要求,因此要一直寻找最短路,直到找不到为止。

这篇关于【管理运筹学】背诵手册(六)| 图与网络分析(最大流问题,最小费用最大流问题)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/439460

相关文章

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

解决RocketMQ的幂等性问题

《解决RocketMQ的幂等性问题》重复消费因调用链路长、消息发送超时或消费者故障导致,通过生产者消息查询、Redis缓存及消费者唯一主键可以确保幂等性,避免重复处理,本文主要介绍了解决RocketM... 目录造成重复消费的原因解决方法生产者端消费者端代码实现造成重复消费的原因当系统的调用链路比较长的时

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

kkFileView启动报错:报错2003端口占用的问题及解决

《kkFileView启动报错:报错2003端口占用的问题及解决》kkFileView启动报错因office组件2003端口未关闭,解决:查杀占用端口的进程,终止Java进程,使用shutdown.s... 目录原因解决总结kkFileViewjavascript启动报错启动office组件失败,请检查of

在macOS上安装jenv管理JDK版本的详细步骤

《在macOS上安装jenv管理JDK版本的详细步骤》jEnv是一个命令行工具,正如它的官网所宣称的那样,它是来让你忘记怎么配置JAVA_HOME环境变量的神队友,:本文主要介绍在macOS上安装... 目录前言安装 jenv添加 JDK 版本到 jenv切换 JDK 版本总结前言China编程在开发 Java

Spring Boot Actuator应用监控与管理的详细步骤

《SpringBootActuator应用监控与管理的详细步骤》SpringBootActuator是SpringBoot的监控工具,提供健康检查、性能指标、日志管理等核心功能,支持自定义和扩展端... 目录一、 Spring Boot Actuator 概述二、 集成 Spring Boot Actuat

MySQL多实例管理如何在一台主机上运行多个mysql

《MySQL多实例管理如何在一台主机上运行多个mysql》文章详解了在Linux主机上通过二进制方式安装MySQL多实例的步骤,涵盖端口配置、数据目录准备、初始化与启动流程,以及排错方法,适用于构建读... 目录一、什么是mysql多实例二、二进制方式安装MySQL1.获取二进制代码包2.安装基础依赖3.清

SpringBoot 异常处理/自定义格式校验的问题实例详解

《SpringBoot异常处理/自定义格式校验的问题实例详解》文章探讨SpringBoot中自定义注解校验问题,区分参数级与类级约束触发的异常类型,建议通过@RestControllerAdvice... 目录1. 问题简要描述2. 异常触发1) 参数级别约束2) 类级别约束3. 异常处理1) 字段级别约束

Python错误AttributeError: 'NoneType' object has no attribute问题的彻底解决方法

《Python错误AttributeError:NoneTypeobjecthasnoattribute问题的彻底解决方法》在Python项目开发和调试过程中,经常会碰到这样一个异常信息... 目录问题背景与概述错误解读:AttributeError: 'NoneType' object has no at

Spring的RedisTemplate的json反序列泛型丢失问题解决

《Spring的RedisTemplate的json反序列泛型丢失问题解决》本文主要介绍了SpringRedisTemplate中使用JSON序列化时泛型信息丢失的问题及其提出三种解决方案,可以根据性... 目录背景解决方案方案一方案二方案三总结背景在使用RedisTemplate操作redis时我们针对