[跑代码]BK-SDM: A Lightweight, Fast, and Cheap Version of Stable Diffusion

2023-11-30 22:12

本文主要是介绍[跑代码]BK-SDM: A Lightweight, Fast, and Cheap Version of Stable Diffusion,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Installation(下载代码-装环境)

conda create -n bk-sdm python=3.8
conda activate bk-sdm
git clone https://github.com/Nota-NetsPresso/BK-SDM.git
cd BK-SDM
pip install -r requirements.txt
Note on the torch versions we've used
  • torch 1.13.1 for MS-COCO evaluation & DreamBooth finetuning on a single 24GB RTX3090
     

  • torch 2.0.1 for KD pretraining on a single 80GB A10
    火炬2.0.1在单个80GB A100上进行KD预训练

    • 如果A100上总批大小为256的预训练导致gpu内存不足,请检查torch版本并考虑升级到torch>2.0.0。
      我的版本也是torch2.0.1 单个A100(80G)理论上吃的下256batch

小的例子

PNDM采样器 50步去噪声

等效代码(仅修改SD-v1.4的U-Net,同时保留其文本编码器和图像解码器):

Distillation Pretraining

Our code was based on train_text_to_image.py of Diffusers 0.15.0.dev0. To access the latest version, use this link.
BK-SDM的diffusers版本0.15
我的diffusers版本比较高0.24.0

检测是否能够训练(先下载数据集get_laion_data.sh再运行代码kd_train_toy.sh)

1 一个玩具数据集(11K的img-txt对)下载到。

bash scripts/get_laion_data.sh preprocessed_11k

/data/laion_aes/preprocessed_11k (1.7GB in tar.gz;1.8GB数据文件夹)。
get_laion_data.sh

需要修改,实际就是下载这三个数据集,我自行下载

# https://netspresso-research-code-release.s3.us-east-2.amazonaws.com/data/improved_aesthetics_6.5plus/preprocessed_11k.tar.gz
# https://netspresso-research-code-release.s3.us-east-2.amazonaws.com/data/improved_aesthetics_6.5plus/preprocessed_212k.tar.gz
# https://netspresso-research-code-release.s3.us-east-2.amazonaws.com/data/improved_aesthetics_6.5plus/preprocessed_2256k.tar.gz

我修改后下载文件名 https://... .../preprocessed_11k.tar.gz直接粘贴到网址里面也可以下载
wget $S3_URL -0 $FILe_PATH
$S3_URL 就是这个网址
$FILe_PATH 就是下载路径./data/laion_aes/preprocessed_11k

DATA_TYPE=$"preprocessed_11k"  # {preprocessed_11k, preprocessed_212k, preprocessed_2256k}
FILE_NAME="${DATA_TYPE}.tar.gz"DATA_DIR="./data/laion_aes/"
FILE_UNZIP_DIR="${DATA_DIR}${DATA_TYPE}"
FILE_PATH="${DATA_DIR}${FILE_NAME}"if [ "$DATA_TYPE" = "preprocessed_11k" ] || [ "$DATA_TYPE" = "preprocessed_212k" ]; thenecho "-> preprocessed_11k or 212k"S3_URL="https://netspresso-research-code-release.s3.us-east-2.amazonaws.com/data/improved_aesthetics_6.5plus/${FILE_NAME}"
elif [ "$DATA_TYPE" = "preprocessed_2256k" ]; thenS3_URL="https://netspresso-research-code-release.s3.us-east-2.amazonaws.com/data/improved_aesthetics_6.25plus/${FILE_NAME}"
elseecho "Something wrong in data folder name"exit
fiwget $S3_URL -O $FILE_PATH
tar -xvzf $FILE_PATH -C $DATA_DIR
echo "downloaded to ${FILE_UNZIP_DIR}"

2 一个小脚本可以用来验证代码的可执行性,并找到与你的GPU匹配的批处理大小。
批量大小为8 (=4×2),训练BK-SDM-Base 20次迭代大约需要5分钟和22GB的GPU内存。

bash scripts/kd_train_toy.sh
MODEL_NAME="CompVis/stable-diffusion-v1-4"
TRAIN_DATA_DIR="./data/laion_aes/preprocessed_11k" # please adjust it if needed
UNET_CONFIG_PATH="./src/unet_config"UNET_NAME="bk_small" # option: ["bk_base", "bk_small", "bk_tiny"]
OUTPUT_DIR="./results/toy_"$UNET_NAME # please adjust it if neededBATCH_SIZE=2
GRAD_ACCUMULATION=4StartTime=$(date +%s)CUDA_VISIBLE_DEVICES=1 accelerate launch src/kd_train_text_to_image.py \--pretrained_model_name_or_path $MODEL_NAME \--train_data_dir $TRAIN_DATA_DIR\--use_ema \--resolution 512 --center_crop --random_flip \--train_batch_size $BATCH_SIZE \--gradient_checkpointing \--mixed_precision="fp16" \--learning_rate 5e-05 \--max_grad_norm 1 \--lr_scheduler="constant" --lr_warmup_steps=0 \--report_to="all" \--max_train_steps=20 \--seed 1234 \--gradient_accumulation_steps $GRAD_ACCUMULATION \--checkpointing_steps 5 \--valid_steps 5 \--lambda_sd 1.0 --lambda_kd_output 1.0 --lambda_kd_feat 1.0 \--use_copy_weight_from_teacher \--unet_config_path $UNET_CONFIG_PATH --unet_config_name $UNET_NAME \--output_dir $OUTPUT_DIREndTime=$(date +%s)
echo "** KD training takes $(($EndTime - $StartTime)) seconds."

单GPU训练BK-SDM{Base, Small, Tiny}-0.22M数据训练
 

bash scripts/get_laion_data.sh preprocessed_212k
bash scripts/kd_train.sh

1 下载数据集preprocessed_212k
2 训练kd_train.sh
(256batch 训练BD-SM-Base 50K轮次需要300hours/53G单卡)
(64batch 训练BD-SM-Base 50K轮次需要60hours/28G单卡) 不理解?
 

单GPU训练BK-SDM{Base, Small, Tiny}-2.3M数据训练

这篇关于[跑代码]BK-SDM: A Lightweight, Fast, and Cheap Version of Stable Diffusion的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/438740

相关文章

Java集合之Iterator迭代器实现代码解析

《Java集合之Iterator迭代器实现代码解析》迭代器Iterator是Java集合框架中的一个核心接口,位于java.util包下,它定义了一种标准的元素访问机制,为各种集合类型提供了一种统一的... 目录一、什么是Iterator二、Iterator的核心方法三、基本使用示例四、Iterator的工

Java 线程池+分布式实现代码

《Java线程池+分布式实现代码》在Java开发中,池通过预先创建并管理一定数量的资源,避免频繁创建和销毁资源带来的性能开销,从而提高系统效率,:本文主要介绍Java线程池+分布式实现代码,需要... 目录1. 线程池1.1 自定义线程池实现1.1.1 线程池核心1.1.2 代码示例1.2 总结流程2. J

JS纯前端实现浏览器语音播报、朗读功能的完整代码

《JS纯前端实现浏览器语音播报、朗读功能的完整代码》在现代互联网的发展中,语音技术正逐渐成为改变用户体验的重要一环,下面:本文主要介绍JS纯前端实现浏览器语音播报、朗读功能的相关资料,文中通过代码... 目录一、朗读单条文本:① 语音自选参数,按钮控制语音:② 效果图:二、朗读多条文本:① 语音有默认值:②

Vue实现路由守卫的示例代码

《Vue实现路由守卫的示例代码》Vue路由守卫是控制页面导航的钩子函数,主要用于鉴权、数据预加载等场景,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着... 目录一、概念二、类型三、实战一、概念路由守卫(Navigation Guards)本质上就是 在路

uni-app小程序项目中实现前端图片压缩实现方式(附详细代码)

《uni-app小程序项目中实现前端图片压缩实现方式(附详细代码)》在uni-app开发中,文件上传和图片处理是很常见的需求,但也经常会遇到各种问题,下面:本文主要介绍uni-app小程序项目中实... 目录方式一:使用<canvas>实现图片压缩(推荐,兼容性好)示例代码(小程序平台):方式二:使用uni

JAVA实现Token自动续期机制的示例代码

《JAVA实现Token自动续期机制的示例代码》本文主要介绍了JAVA实现Token自动续期机制的示例代码,通过动态调整会话生命周期平衡安全性与用户体验,解决固定有效期Token带来的风险与不便,感兴... 目录1. 固定有效期Token的内在局限性2. 自动续期机制:兼顾安全与体验的解决方案3. 总结PS

C#中通过Response.Headers设置自定义参数的代码示例

《C#中通过Response.Headers设置自定义参数的代码示例》:本文主要介绍C#中通过Response.Headers设置自定义响应头的方法,涵盖基础添加、安全校验、生产实践及调试技巧,强... 目录一、基础设置方法1. 直接添加自定义头2. 批量设置模式二、高级配置技巧1. 安全校验机制2. 类型

Python屏幕抓取和录制的详细代码示例

《Python屏幕抓取和录制的详细代码示例》随着现代计算机性能的提高和网络速度的加快,越来越多的用户需要对他们的屏幕进行录制,:本文主要介绍Python屏幕抓取和录制的相关资料,需要的朋友可以参考... 目录一、常用 python 屏幕抓取库二、pyautogui 截屏示例三、mss 高性能截图四、Pill

使用MapStruct实现Java对象映射的示例代码

《使用MapStruct实现Java对象映射的示例代码》本文主要介绍了使用MapStruct实现Java对象映射的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,... 目录一、什么是 MapStruct?二、实战演练:三步集成 MapStruct第一步:添加 Mave

Java抽象类Abstract Class示例代码详解

《Java抽象类AbstractClass示例代码详解》Java中的抽象类(AbstractClass)是面向对象编程中的重要概念,它通过abstract关键字声明,用于定义一组相关类的公共行为和属... 目录一、抽象类的定义1. 语法格式2. 核心特征二、抽象类的核心用途1. 定义公共接口2. 提供默认实