赛道 | 深延科技包揽SIGIR eCOM‘21双赛道冠军 自研自动特征工程框架神助攻

本文主要是介绍赛道 | 深延科技包揽SIGIR eCOM‘21双赛道冠军 自研自动特征工程框架神助攻,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

日前,信息检索领域的国际重要会议SIGIR 2021正在线上举行,来自深兰科技的DeepBlueAI团队参加了SIGIR eCom'21 竞赛,并且表现出色,在竞赛仅设的两个赛道中均获得冠军。

这是继2019年获得该系列比赛冠军以来的第二次夺冠,证明了深兰在电商推荐系统领域技术有着领先的地位。此外,更值得注意的是在第二个赛道,深兰自研的自动特征工程框架助力队伍获得了冠军,证明了其自动化机器学习的强大能力。

SIGIR eCom'21 竞赛由Coveo承办,是在2021 SIGIR Workshop on eCommerce上组织的一场电商商品推荐的比赛。该比赛从2017年开始,每年举办一次,今年已是第5届,吸引了来自NVIDIA、eBay、华东师范大学、乐天等知名公司和学校的团队。

一、SIGIR eCom'21冠军方案解读

1、赛题介绍

SIGIR eCom'21 竞赛分为两个赛题:

第一、商品推荐任务。赛题把一个会话分成前后两部分,给出前面一部分的数据,要求预测出后面会交互的商品,是一个大规模数据的推荐问题。

第二、购买意图预测任务。赛题给出一个有添加购物车行为的会话的前面一部分,要求预测最后用户是不是真的会买这个商品,是一个二分类问题。

2、团队成绩

比赛竞争非常激烈,最终DeepBlueAI团队击败了NVIDIA团队,在两个任务都取得了冠军。

3、数据分析

两个任务使用的是同一批数据,训练集测试集合起来一共有600多万,其中有100万会话数据和6万多个商品。经过分析,这两个任务分别有以下难点。

对于商品推荐任务:

首先数据量很大,对代码运行效率要求很高;第二有30%的测试集会话,给的初始信息很少,怎么有效优化冷启动的会话,提升得分?第三原始数据给出的字段极为丰富,怎么有效利用这些信息?

对于预测购买意图任务,主要是这个任务的评分指标很复杂:

首先,它定义了一个k,k表示第一次添加购物车之后会话还有几条记录。评分指标要求对k越小的样本预测正确奖励越高,针对这一点,怎么设计模型或者策略能够适应这个机制?

第二,每个k是一个分类,最终得分是每个类样本的平均准确率之和。因为使用了准确率(accuracy),加上正负样本不平衡,导致对模型的精度要求非常高。

4、竞赛方案

对于商品推荐任务,团队整体采用召回+排序的框架。

排序方面,团队尝试了很多方法,但是提升的效果有限。召回在这个任务里更为重要,在尝试了很多种方法后,团队最终使用了两个效果较好的召回。

(1)u2i_interact_i2i_itemcf:

先通过协同过滤的方法算出item与item之间的相似度,然后根据user历史交互的item,推荐与它最相似的item。

(2)u2url_url2i:

先统计访问当前url之后,下次访问每个item的概率;然后根据用户最后一个url推荐那些概率大的item。

对于预测购买意图任务:

首先是特征工程,团队采用了手动特征与自动特征工程相结合的方式。手动特征方面,主要是提取一些比较明显有效的特征,如用户是否查看了添加购物车商品的细节、查看了多久、用户一共交互了多少商品等比较直观的特征,效果上评分指标提升0.008;自动特征工程则是利用深兰自研autosmart框架提取的特征,这一部分特征效果提升0.002。

然后是后处理方面,针对评分指标的特性,基于k值不同对每个分类单独进行阈值调整,达到本地最好效果。

二、SIGIR 2019 eBay冠军方案解读

值得一提的是,早在2019年深延科技就在SIGIR 2019 eBay 数据挑战赛上夺得冠军。

当时比赛是由 eBay 搜索组组织的高精度召回任务。挑战针对的是电子商务搜索中的常见问题:展示非相关性排序时要显示的项目。用户通常按非相关性的维度进行排序,例如流行度、评论得分、价格等。

|关于深延科技|

深延科技成立于2018年,是深兰科技(DeepBlue)旗下的子公司,以“人工智能赋能企业与行业”为使命,助力合作伙伴降低成本、提升效率并挖掘更多商业机会,进一步开拓市场,服务民生。公司推出四款平台产品——深延智能数据标注平台、深延AI开发平台、深延自动化机器学习平台、深延AI开放平台,涵盖从数据标注及处理,到模型构建,再到行业应用和解决方案的全流程服务,一站式助力企业“AI”化。

这篇关于赛道 | 深延科技包揽SIGIR eCOM‘21双赛道冠军 自研自动特征工程框架神助攻的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/438465

相关文章

MyBatis Plus实现时间字段自动填充的完整方案

《MyBatisPlus实现时间字段自动填充的完整方案》在日常开发中,我们经常需要记录数据的创建时间和更新时间,传统的做法是在每次插入或更新操作时手动设置这些时间字段,这种方式不仅繁琐,还容易遗漏,... 目录前言解决目标技术栈实现步骤1. 实体类注解配置2. 创建元数据处理器3. 服务层代码优化填充机制详

深入浅出Spring中的@Autowired自动注入的工作原理及实践应用

《深入浅出Spring中的@Autowired自动注入的工作原理及实践应用》在Spring框架的学习旅程中,@Autowired无疑是一个高频出现却又让初学者头疼的注解,它看似简单,却蕴含着Sprin... 目录深入浅出Spring中的@Autowired:自动注入的奥秘什么是依赖注入?@Autowired

GSON框架下将百度天气JSON数据转JavaBean

《GSON框架下将百度天气JSON数据转JavaBean》这篇文章主要为大家详细介绍了如何在GSON框架下实现将百度天气JSON数据转JavaBean,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录前言一、百度天气jsON1、请求参数2、返回参数3、属性映射二、GSON属性映射实战1、类对象映

基于Redis自动过期的流处理暂停机制

《基于Redis自动过期的流处理暂停机制》基于Redis自动过期的流处理暂停机制是一种高效、可靠且易于实现的解决方案,防止延时过大的数据影响实时处理自动恢复处理,以避免积压的数据影响实时性,下面就来详... 目录核心思路代码实现1. 初始化Redis连接和键前缀2. 接收数据时检查暂停状态3. 检测到延时过

解决若依微服务框架启动报错的问题

《解决若依微服务框架启动报错的问题》Invalidboundstatement错误通常由MyBatis映射文件未正确加载或Nacos配置未读取导致,需检查XML的namespace与方法ID是否匹配,... 目录ruoyi-system模块报错报错详情nacos文件目录总结ruoyi-systnGLNYpe

SpringBoot实现RSA+AES自动接口解密的实战指南

《SpringBoot实现RSA+AES自动接口解密的实战指南》在当今数据泄露频发的网络环境中,接口安全已成为开发者不可忽视的核心议题,RSA+AES混合加密方案因其安全性高、性能优越而被广泛采用,本... 目录一、项目依赖与环境准备1.1 Maven依赖配置1.2 密钥生成与配置二、加密工具类实现2.1

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

SQL Server跟踪自动统计信息更新实战指南

《SQLServer跟踪自动统计信息更新实战指南》本文详解SQLServer自动统计信息更新的跟踪方法,推荐使用扩展事件实时捕获更新操作及详细信息,同时结合系统视图快速检查统计信息状态,重点强调修... 目录SQL Server 如何跟踪自动统计信息更新:深入解析与实战指南 核心跟踪方法1️⃣ 利用系统目录

Spring Security 单点登录与自动登录机制的实现原理

《SpringSecurity单点登录与自动登录机制的实现原理》本文探讨SpringSecurity实现单点登录(SSO)与自动登录机制,涵盖JWT跨系统认证、RememberMe持久化Token... 目录一、核心概念解析1.1 单点登录(SSO)1.2 自动登录(Remember Me)二、代码分析三、

MyBatis-Plus 自动赋值实体字段最佳实践指南

《MyBatis-Plus自动赋值实体字段最佳实践指南》MyBatis-Plus通过@TableField注解与填充策略,实现时间戳、用户信息、逻辑删除等字段的自动填充,减少手动赋值,提升开发效率与... 目录1. MyBATis-Plus 自动赋值概述1.1 适用场景1.2 自动填充的原理1.3 填充策略