SimMIM:一种更简单的MIM方法

2023-11-30 20:32
文章标签 简单 方法 一种 mim simmim

本文主要是介绍SimMIM:一种更简单的MIM方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

自从何恺明的MAE(←点击蓝字查看文章详情)出来之后,基于MIM(Masked Image Modeling)的无监督学习方法越来越受到关注。这里介绍一篇和MAE同期的工作:SimMIM: A Simple Framework for Masked Image Modeling,研究团队是微软亚研院。

SimMIM和MAE有很多相似的设计和结论,而且效果也比较接近,比如基于ViT-B的模型无监督训练后再finetune可以ImageNet数据集达到83.8%的top1 accuray(MAE为83.6%)。不过相比MAE,SimMIM更加简单,而且也可以用来无监督训练金字塔结构的vision transformer模型如swin transformer等。目前SimMIM实现代码已经开源,本文将基于论文和源码对SimMIM方法进行解读。

图片

算法原理

SimMIM采用最简单的MIM方法:随机mask掉输入图像的一部分patch,然后通过encoder-decoder来预测masked patchs的原始像素值。算法原理图如上图所示,从设计方面和MAE基本一致。SimMIM的主要结论如下:

  • 直接对图像采用简单的random mask是非常简单有效的方法;

  • 直接回归原始的像素的RGB值不比BEiT采用的分类效果差;

  • decoder采用轻量级的设计(直接采用一个线性层)也能得到很好的效果;

这些结论也是在MAE论文中得到了验证。那么SimMIM和MAE的区别在哪里呢?主要有以下两点:

  • SimMIM的encoder同时处理visible tokens和masked tokens,而MAE的encoder只处理visible tokens;

  • SimMIM的decoder只采用一个线性层来回归像素值,而MAE的decoder采用transformer结构;

第2个差异带来的影响相对很小,因为两个论文都证明了decoder设计对性能影响较小。主要的差异点是第一个,MAE训练时只处理visible tokens一方面可以加速训练(减少了计算量),同时也可以减少pre-training和deploy之间的gap(deploy时输入是非masked的图像,无masked token),MAE实验也证明只处理visible tokens可以提升linear probing性能:73.5% vs 59.6%。

而SimMIM是处理所有的tokens,从实验结果上看也符合MAE的结论,SimMIM方法得到的ViT-B模型的linear probing只有56.7%,不过这不并不会影响finetune后的性能,关于这点MAE论文也论证了。不过SimMIM这样做带来的一个好处是可以用来训练其它非“同质结构”模型,比如swin transformer,由于它各个stage间要对patch进行merge操作,所以token并不是像ViT那样一成不变的。下面我们具体介绍SimMIM的各个部分,这里默认实验都是以Swin-B为encoder,为了减少实验成本,输入图像大小为192x192(原来是224),window size设置为6(原来是7),预训练epoch为100。

Masking Strategy

SimMIM的masking策略按照一定mask ratio随机mask掉一部分patch。在MAE中,masked patch size和ViT的patch size是一致的,比如ViT-B/16模型,masked patch size就要设计为16x16,然后用一个可学习的masked token来代替。但是对于SimMIM,其设计masked patch size不一定等于模型的patch size,比如ViT模型masked patch size可以是32x32,理论上mask patch size只要是ViT模型patch size的整数倍就可以,因此此时每个mask掉的patch可以整分成和模型patch一样大小的若干个patch。

对于金字塔结构的swin transformer,每个stage的patch size是不同的,比如第一个stage的patch size是4x4,而最后一个stage的patch size是32x32,此时设计的mask patch size只需要是第一个stage的patch size整数就好。无论

这篇关于SimMIM:一种更简单的MIM方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/438440

相关文章

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安

Maven 配置中的 <mirror>绕过 HTTP 阻断机制的方法

《Maven配置中的<mirror>绕过HTTP阻断机制的方法》:本文主要介绍Maven配置中的<mirror>绕过HTTP阻断机制的方法,本文给大家分享问题原因及解决方案,感兴趣的朋友一... 目录一、问题场景:升级 Maven 后构建失败二、解决方案:通过 <mirror> 配置覆盖默认行为1. 配置示

SpringBoot排查和解决JSON解析错误(400 Bad Request)的方法

《SpringBoot排查和解决JSON解析错误(400BadRequest)的方法》在开发SpringBootRESTfulAPI时,客户端与服务端的数据交互通常使用JSON格式,然而,JSON... 目录问题背景1. 问题描述2. 错误分析解决方案1. 手动重新输入jsON2. 使用工具清理JSON3.

使用jenv工具管理多个JDK版本的方法步骤

《使用jenv工具管理多个JDK版本的方法步骤》jenv是一个开源的Java环境管理工具,旨在帮助开发者在同一台机器上轻松管理和切换多个Java版本,:本文主要介绍使用jenv工具管理多个JD... 目录一、jenv到底是干啥的?二、jenv的核心功能(一)管理多个Java版本(二)支持插件扩展(三)环境隔

Java中Map.Entry()含义及方法使用代码

《Java中Map.Entry()含义及方法使用代码》:本文主要介绍Java中Map.Entry()含义及方法使用的相关资料,Map.Entry是Java中Map的静态内部接口,用于表示键值对,其... 目录前言 Map.Entry作用核心方法常见使用场景1. 遍历 Map 的所有键值对2. 直接修改 Ma

Mybatis Plus Join使用方法示例详解

《MybatisPlusJoin使用方法示例详解》:本文主要介绍MybatisPlusJoin使用方法示例详解,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,... 目录1、pom文件2、yaml配置文件3、分页插件4、示例代码:5、测试代码6、和PageHelper结合6

Java中实现线程的创建和启动的方法

《Java中实现线程的创建和启动的方法》在Java中,实现线程的创建和启动是两个不同但紧密相关的概念,理解为什么要启动线程(调用start()方法)而非直接调用run()方法,是掌握多线程编程的关键,... 目录1. 线程的生命周期2. start() vs run() 的本质区别3. 为什么必须通过 st

基于Python实现一个简单的题库与在线考试系统

《基于Python实现一个简单的题库与在线考试系统》在当今信息化教育时代,在线学习与考试系统已成为教育技术领域的重要组成部分,本文就来介绍一下如何使用Python和PyQt5框架开发一个名为白泽题库系... 目录概述功能特点界面展示系统架构设计类结构图Excel题库填写格式模板题库题目填写格式表核心数据结构

C#之List集合去重复对象的实现方法

《C#之List集合去重复对象的实现方法》:本文主要介绍C#之List集合去重复对象的实现方法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C# List集合去重复对象方法1、测试数据2、测试数据3、知识点补充总结C# List集合去重复对象方法1、测试数据

SpringBoot读取ZooKeeper(ZK)属性的方法实现

《SpringBoot读取ZooKeeper(ZK)属性的方法实现》本文主要介绍了SpringBoot读取ZooKeeper(ZK)属性的方法实现,强调使用@ConfigurationProperti... 目录1. 在配置文件中定义 ZK 属性application.propertiesapplicati