arm linux spin_lock 原理

2023-11-30 12:58
文章标签 linux 原理 spin arm lock

本文主要是介绍arm linux spin_lock 原理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

aarch32 linux4.9 

spin lock的目的是为了让cpu在等待资源的时候自旋在那里而不是去睡眠进行上下文切换,所以spin_lock中做的事情不能太多要不然反而会降低系统性能,事情的耗时数量级应该是数个tick,spi_lock相关的常用的api如下:

static __always_inline void spin_lock(spinlock_t *lock)static __always_inline void spin_lock_bh(spinlock_t *lock)static __always_inline void spin_lock_irq(spinlock_t *lock)spin_lock_irqsave(lock, flags)static __always_inline void spin_unlock(spinlock_t *lock);static __always_inline void spin_unlock_bh(spinlock_t *lock)static __always_inline void spin_unlock_irq(spinlock_t *lock)static __always_inline void spin_unlock_irqrestore(spinlock_t *lock, unsigned long flags)

spin_lock  spin_unlock  //关抢占

spin_lock_bh  spin_unlock_bh   //bh意指中断bottom half

spin_lock_irq  spin_unlock_irq    //中断上下文中的spin_lock,先关抢占然后会把当前cpu的中断disable  unlock的时候打开

spin_lock_irqsave  spin_unlock_irqrestore    //中断上下文中使用,先关抢占然后会把当前cpu的cpsr的中断状态保存下来然后restore的时候恢复

以一个复杂的smp下的竞态为例说明下使用方式

每个cpu的多个task与irq都需要访问某个资源的时候,形成的核内和核间的竞争,spin_lock的使用方式如下图

以spin_lock_irqsave为例说明下spin_lock是怎样实现自旋的,自旋到底是个什么状态

#define spin_lock_irqsave(lock, flags)				\
do {								\raw_spin_lock_irqsave(spinlock_check(lock), flags);	\
} while (0)#define raw_spin_lock_irqsave(lock, flags)			\do {						\typecheck(unsigned long, flags);	\flags = _raw_spin_lock_irqsave(lock);	\} while (0)unsigned long __lockfunc _raw_spin_lock_irqsave(raw_spinlock_t *lock)
{return __raw_spin_lock_irqsave(lock);
}static inline unsigned long __raw_spin_lock_irqsave(raw_spinlock_t *lock)
{unsigned long flags;local_irq_save(flags);preempt_disable();spin_acquire(&lock->dep_map, 0, 0, _RET_IP_);/** On lockdep we dont want the hand-coded irq-enable of* do_raw_spin_lock_flags() code, because lockdep assumes* that interrupts are not re-enabled during lock-acquire:*/
#ifdef CONFIG_LOCKDEPLOCK_CONTENDED(lock, do_raw_spin_trylock, do_raw_spin_lock);
#elsedo_raw_spin_lock_flags(lock, &flags);
#endifreturn flags;
}static inline void
do_raw_spin_lock_flags(raw_spinlock_t *lock, unsigned long *flags) __acquires(lock)
{__acquire(lock);arch_spin_lock_flags(&lock->raw_lock, *flags);
}#define arch_spin_lock_flags(lock, flags) arch_spin_lock(lock)static inline void arch_spin_lock(arch_spinlock_t *lock)
{unsigned long tmp;u32 newval;arch_spinlock_t lockval;prefetchw(&lock->slock);__asm__ __volatile__(
"1:	ldrex	%0, [%3]\n"
"	add	%1, %0, %4\n"
"	strex	%2, %1, [%3]\n"
"	teq	%2, #0\n"
"	bne	1b": "=&r" (lockval), "=&r" (newval), "=&r" (tmp): "r" (&lock->slock), "I" (1 << TICKET_SHIFT): "cc");while (lockval.tickets.next != lockval.tickets.owner) {wfe();lockval.tickets.owner = ACCESS_ONCE(lock->tickets.owner);}smp_mb();//清流水线  memory barrir
}

最终调用到的arch_spi_lock函数,ldrex和strex是arm 支持的原子操作指令,关于这两条命令参考博客https://blog.csdn.net/roland_sun/article/details/47670099

#define TICKET_SHIFT 16 
typedef struct { 
union { 
u32 slock; 
struct __raw_tickets { u16 owner; u16 next; } tickets; 
}; 
} arch_spinlock_t;

ldrex 取lock的成员的值暂存到lock_val

add new_val= lock_val + 0x10000  lock的next++

strex new_val 到lock成员,操作返回值tmp

如果返回值是0 跳到1b继续循环执行

因为ldrex声明了这段区域后只有核内,核间的其他最先更新strex 更新该内存的task才会继续执行下去,这组原子操作的目的是保证当前只有一个cpu 能获取,在cpu和内存之间搭了个独木桥。 spin_unlock的时候会把 owner++; 所以会while到next 与owner相等,spin_lock初始化的时候owner和next都是0,表示unlocked。当第一个个thread调用spin_lock来申请lock的时候,owner和next相等,表示unlocked,这时候该thread持有该spin lock,并且执行next++,也就是将next设定为1。没有其他thread来竞争就调用spin_unlock执行owner++,也就是将owner设定为1。next++之后等于2,后面的task想要持有锁的话分配当然也会执行next++,接着next值不断的增加,如果没有unlock则owner的值不动,直到调用spin_unlock owner++之后等于2满足条件才会截接着spin_lock继续执行下去

 

 

这篇关于arm linux spin_lock 原理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/437119

相关文章

解决mysql插入数据锁等待超时报错:Lock wait timeout exceeded;try restarting transaction

《解决mysql插入数据锁等待超时报错:Lockwaittimeoutexceeded;tryrestartingtransaction》:本文主要介绍解决mysql插入数据锁等待超时报... 目录报错信息解决办法1、数据库中执行如下sql2、再到 INNODB_TRX 事务表中查看总结报错信息Lock

apache的commons-pool2原理与使用实践记录

《apache的commons-pool2原理与使用实践记录》ApacheCommonsPool2是一个高效的对象池化框架,通过复用昂贵资源(如数据库连接、线程、网络连接)优化系统性能,这篇文章主... 目录一、核心原理与组件二、使用步骤详解(以数据库连接池为例)三、高级配置与优化四、典型应用场景五、注意事

Linux CPU飙升排查五步法解读

《LinuxCPU飙升排查五步法解读》:本文主要介绍LinuxCPU飙升排查五步法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录排查思路-五步法1. top命令定位应用进程pid2.php top-Hp[pid]定位应用进程对应的线程tid3. printf"%

Linux下安装Anaconda3全过程

《Linux下安装Anaconda3全过程》:本文主要介绍Linux下安装Anaconda3全过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录简介环境下载安装一、找到下载好的文件名为Anaconda3-2018.12-linux-x86_64的安装包二、或者通

Linux系统之stress-ng测压工具的使用

《Linux系统之stress-ng测压工具的使用》:本文主要介绍Linux系统之stress-ng测压工具的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、理论1.stress工具简介与安装2.语法及参数3.具体安装二、实验1.运行8 cpu, 4 fo

Linux lvm实例之如何创建一个专用于MySQL数据存储的LVM卷组

《Linuxlvm实例之如何创建一个专用于MySQL数据存储的LVM卷组》:本文主要介绍使用Linux创建一个专用于MySQL数据存储的LVM卷组的实例,具有很好的参考价值,希望对大家有所帮助,... 目录在Centos 7上创建卷China编程组并配置mysql数据目录1. 检查现有磁盘2. 创建物理卷3. 创

Linux查看系统盘和SSD盘的容量、型号及挂载信息的方法

《Linux查看系统盘和SSD盘的容量、型号及挂载信息的方法》在Linux系统中,管理磁盘设备和分区是日常运维工作的重要部分,而lsblk命令是一个强大的工具,它用于列出系统中的块设备(blockde... 目录1. 查看所有磁盘的物理信息方法 1:使用 lsblk(推荐)方法 2:使用 fdisk -l(

Linux中的more 和 less区别对比分析

《Linux中的more和less区别对比分析》在Linux/Unix系统中,more和less都是用于分页查看文本文件的命令,但less是more的增强版,功能更强大,:本文主要介绍Linu... 目录1. 基础功能对比2. 常用操作对比less 的操作3. 实际使用示例4. 为什么推荐 less?5.

linux lvm快照的正确mount挂载实现方式

《linuxlvm快照的正确mount挂载实现方式》:本文主要介绍linuxlvm快照的正确mount挂载实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux lvm快照的正确mount挂载1. 检查快照是否正确创建www.chinasem.cn2.

Linux给磁盘扩容(LVM方式)的方法实现

《Linux给磁盘扩容(LVM方式)的方法实现》本文主要介绍了Linux给磁盘扩容(LVM方式)的方法实现,涵盖PV/VG/LV概念及操作步骤,具有一定的参考价值,感兴趣的可以了解一下... 目录1 概念2 实战2.1 相关基础命令2.2 开始给LVM扩容2.3 总结最近测试性能,在本地打数据时,发现磁盘空