arm linux spin_lock 原理

2023-11-30 12:58
文章标签 linux 原理 spin arm lock

本文主要是介绍arm linux spin_lock 原理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

aarch32 linux4.9 

spin lock的目的是为了让cpu在等待资源的时候自旋在那里而不是去睡眠进行上下文切换,所以spin_lock中做的事情不能太多要不然反而会降低系统性能,事情的耗时数量级应该是数个tick,spi_lock相关的常用的api如下:

static __always_inline void spin_lock(spinlock_t *lock)static __always_inline void spin_lock_bh(spinlock_t *lock)static __always_inline void spin_lock_irq(spinlock_t *lock)spin_lock_irqsave(lock, flags)static __always_inline void spin_unlock(spinlock_t *lock);static __always_inline void spin_unlock_bh(spinlock_t *lock)static __always_inline void spin_unlock_irq(spinlock_t *lock)static __always_inline void spin_unlock_irqrestore(spinlock_t *lock, unsigned long flags)

spin_lock  spin_unlock  //关抢占

spin_lock_bh  spin_unlock_bh   //bh意指中断bottom half

spin_lock_irq  spin_unlock_irq    //中断上下文中的spin_lock,先关抢占然后会把当前cpu的中断disable  unlock的时候打开

spin_lock_irqsave  spin_unlock_irqrestore    //中断上下文中使用,先关抢占然后会把当前cpu的cpsr的中断状态保存下来然后restore的时候恢复

以一个复杂的smp下的竞态为例说明下使用方式

每个cpu的多个task与irq都需要访问某个资源的时候,形成的核内和核间的竞争,spin_lock的使用方式如下图

以spin_lock_irqsave为例说明下spin_lock是怎样实现自旋的,自旋到底是个什么状态

#define spin_lock_irqsave(lock, flags)				\
do {								\raw_spin_lock_irqsave(spinlock_check(lock), flags);	\
} while (0)#define raw_spin_lock_irqsave(lock, flags)			\do {						\typecheck(unsigned long, flags);	\flags = _raw_spin_lock_irqsave(lock);	\} while (0)unsigned long __lockfunc _raw_spin_lock_irqsave(raw_spinlock_t *lock)
{return __raw_spin_lock_irqsave(lock);
}static inline unsigned long __raw_spin_lock_irqsave(raw_spinlock_t *lock)
{unsigned long flags;local_irq_save(flags);preempt_disable();spin_acquire(&lock->dep_map, 0, 0, _RET_IP_);/** On lockdep we dont want the hand-coded irq-enable of* do_raw_spin_lock_flags() code, because lockdep assumes* that interrupts are not re-enabled during lock-acquire:*/
#ifdef CONFIG_LOCKDEPLOCK_CONTENDED(lock, do_raw_spin_trylock, do_raw_spin_lock);
#elsedo_raw_spin_lock_flags(lock, &flags);
#endifreturn flags;
}static inline void
do_raw_spin_lock_flags(raw_spinlock_t *lock, unsigned long *flags) __acquires(lock)
{__acquire(lock);arch_spin_lock_flags(&lock->raw_lock, *flags);
}#define arch_spin_lock_flags(lock, flags) arch_spin_lock(lock)static inline void arch_spin_lock(arch_spinlock_t *lock)
{unsigned long tmp;u32 newval;arch_spinlock_t lockval;prefetchw(&lock->slock);__asm__ __volatile__(
"1:	ldrex	%0, [%3]\n"
"	add	%1, %0, %4\n"
"	strex	%2, %1, [%3]\n"
"	teq	%2, #0\n"
"	bne	1b": "=&r" (lockval), "=&r" (newval), "=&r" (tmp): "r" (&lock->slock), "I" (1 << TICKET_SHIFT): "cc");while (lockval.tickets.next != lockval.tickets.owner) {wfe();lockval.tickets.owner = ACCESS_ONCE(lock->tickets.owner);}smp_mb();//清流水线  memory barrir
}

最终调用到的arch_spi_lock函数,ldrex和strex是arm 支持的原子操作指令,关于这两条命令参考博客https://blog.csdn.net/roland_sun/article/details/47670099

#define TICKET_SHIFT 16 
typedef struct { 
union { 
u32 slock; 
struct __raw_tickets { u16 owner; u16 next; } tickets; 
}; 
} arch_spinlock_t;

ldrex 取lock的成员的值暂存到lock_val

add new_val= lock_val + 0x10000  lock的next++

strex new_val 到lock成员,操作返回值tmp

如果返回值是0 跳到1b继续循环执行

因为ldrex声明了这段区域后只有核内,核间的其他最先更新strex 更新该内存的task才会继续执行下去,这组原子操作的目的是保证当前只有一个cpu 能获取,在cpu和内存之间搭了个独木桥。 spin_unlock的时候会把 owner++; 所以会while到next 与owner相等,spin_lock初始化的时候owner和next都是0,表示unlocked。当第一个个thread调用spin_lock来申请lock的时候,owner和next相等,表示unlocked,这时候该thread持有该spin lock,并且执行next++,也就是将next设定为1。没有其他thread来竞争就调用spin_unlock执行owner++,也就是将owner设定为1。next++之后等于2,后面的task想要持有锁的话分配当然也会执行next++,接着next值不断的增加,如果没有unlock则owner的值不动,直到调用spin_unlock owner++之后等于2满足条件才会截接着spin_lock继续执行下去

 

 

这篇关于arm linux spin_lock 原理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/437119

相关文章

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

Linux join命令的使用及说明

《Linuxjoin命令的使用及说明》`join`命令用于在Linux中按字段将两个文件进行连接,类似于SQL的JOIN,它需要两个文件按用于匹配的字段排序,并且第一个文件的换行符必须是LF,`jo... 目录一. 基本语法二. 数据准备三. 指定文件的连接key四.-a输出指定文件的所有行五.-o指定输出

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

Linux jq命令的使用解读

《Linuxjq命令的使用解读》jq是一个强大的命令行工具,用于处理JSON数据,它可以用来查看、过滤、修改、格式化JSON数据,通过使用各种选项和过滤器,可以实现复杂的JSON处理任务... 目录一. 简介二. 选项2.1.2.2-c2.3-r2.4-R三. 字段提取3.1 普通字段3.2 数组字段四.

Linux kill正在执行的后台任务 kill进程组使用详解

《Linuxkill正在执行的后台任务kill进程组使用详解》文章介绍了两个脚本的功能和区别,以及执行这些脚本时遇到的进程管理问题,通过查看进程树、使用`kill`命令和`lsof`命令,分析了子... 目录零. 用到的命令一. 待执行的脚本二. 执行含子进程的脚本,并kill2.1 进程查看2.2 遇到的

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Linux云服务器手动配置DNS的方法步骤

《Linux云服务器手动配置DNS的方法步骤》在Linux云服务器上手动配置DNS(域名系统)是确保服务器能够正常解析域名的重要步骤,以下是详细的配置方法,包括系统文件的修改和常见问题的解决方案,需要... 目录1. 为什么需要手动配置 DNS?2. 手动配置 DNS 的方法方法 1:修改 /etc/res

Redis中Hash从使用过程到原理说明

《Redis中Hash从使用过程到原理说明》RedisHash结构用于存储字段-值对,适合对象数据,支持HSET、HGET等命令,采用ziplist或hashtable编码,通过渐进式rehash优化... 目录一、开篇:Hash就像超市的货架二、Hash的基本使用1. 常用命令示例2. Java操作示例三

Linux创建服务使用systemctl管理详解

《Linux创建服务使用systemctl管理详解》文章指导在Linux中创建systemd服务,设置文件权限为所有者读写、其他只读,重新加载配置,启动服务并检查状态,确保服务正常运行,关键步骤包括权... 目录创建服务 /usr/lib/systemd/system/设置服务文件权限:所有者读写js,其他

Redis中Set结构使用过程与原理说明

《Redis中Set结构使用过程与原理说明》本文解析了RedisSet数据结构,涵盖其基本操作(如添加、查找)、集合运算(交并差)、底层实现(intset与hashtable自动切换机制)、典型应用场... 目录开篇:从购物车到Redis Set一、Redis Set的基本操作1.1 编程常用命令1.2 集