【端到端可微1】端到端的训练,使用反向传播,要求过程可微分

2023-11-30 10:52

本文主要是介绍【端到端可微1】端到端的训练,使用反向传播,要求过程可微分,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 背景
  • 想法: Weighted least-squares fitting
  • 方法: Backpropagating through the fitting procedure.
  • 温习之前的基础
    • 前向传播
    • 反向传播
  • 总结

背景

想做一个端到端训练的模型,将最小二乘嵌入其中。因此有了这系列文章。

想法: Weighted least-squares fitting

我们想把“最小二乘模块”嵌入深度学习中,将其作为一份子参与端到端的训练

我们设计了加权最小二乘问题。设W∈Rm×m是包含每个观测的权值wi的对角矩阵。在我们的框架中,观测结果将对应于图像参考框架中的固定(x, y)坐标,权重将由基于图像的深度网络生成。加权最小二乘问题是

在这里插入图片描述

方法: Backpropagating through the fitting procedure.

我们深度学习最后的卷积输出特征图,我们定义这个特征图为“一个加权像素坐标列表(xi, yi, wi)”。其中坐标(xi, yi)是固定的,而加权wi是由一个基于输入图像的深层网络生成的。我们可以利用这些值构造矩阵X, Y和w,求解加权最小二乘问题,通过加权像素坐标得到最佳拟合曲线的参数β。

与其将拟合过程作为一个单独的后处理步骤,我们可以反向传播它,并在兴趣β参数上应用一个损失函数,而不是间接地在网络产生的权值映射上。通过这种方式,我们获得了一个强大的工具,可以在深度学习框架中以端到端方式解决最小二乘的问题。

注意,方程3只涉及可微矩阵运算。因此,可以计算β对W的导数,从而也可以计算深度网络的参数。通过矩阵变换反向传播的细节已经很好地理解了。我们使用Cholesky分解推导这个问题的梯度。

β对W的导数表示为dβ/dW。这里的β和W都是变量,dβ/dW表示β对W的变化率。在求解这个导数时,我们需要将β作为独立变量,W作为因变量,然后对W进行求导。

具体的求导方法取决于β和W的具体形式和关系。如果β和W都是标量变量,那么可以直接对W求导得到dβ/dW。如果β和W是向量或矩阵变量,那么我们需要对每个元素或矩阵元素分别求导,得到一个与W相同形状的导数矩阵

需要注意的是,在求解dβ/dW时,我们通常将其他变量视为常数,即假设它们不随W的变化而变化。这是因为我们只关注β对W的导数,而不考虑其他变量对此导数的影响。
总之,β对W的导数表示为dβ/dW,具体的求导方法取决于β和W的形式和关系。

温习之前的基础

1、2月10日 感知器+浅层神经网络+反向传播+tensorflow
2、链式法则,论文:Introduction to Gradient Descent and Backpropagation Algorithm

在这里插入图片描述
在这里插入图片描述

BP 算法是一种参数学习方法,一般分为两个过程:前向传播(求误差),反向传播(误差回传)。

那么什么是前向传播、反向传播呢?这里先说结论:前向传播是为反向传播准备好要用到的数值,反向传播本质上是一种求梯度的高效方法。

求梯度是为了什么呢?就是为了更新模型的参数(权重 W 和偏置 b)。

所有参数值随机初始化(论文乱写一通),前向传播(提交论文),误差函数(审稿),反向传播(审稿人:你这不行,改!),参数更新(修改论文),前向传播,…;反反复复,论文发表(模型训练完毕)。

前向传播

在正式介绍前向传播前,先简单介绍计算图(Computational Graph)的概念, f ( x , y , z ) = ( x + y ) ∗ z 的计算图
在这里插入图片描述

分别赋值 x = − 2 , y = 5 , z = − 4 ,从计算图的左边开始,数据开始流动,依次计算出 q 、 f 。

最终得到计算图中那 6 个绿色的数字,这就是前向传播的结果。

反向传播

我们说了,反向传播本质上是一种求梯度的高效方法。

总结

这系列文章将逐步完成一个端到端可微的模型,挖个坑。
项目开启时间:2023-07-04

但是一直拖到了11月30,最近同事讨论问题才想起来继续实施。

这篇关于【端到端可微1】端到端的训练,使用反向传播,要求过程可微分的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/436745

相关文章

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

使用IDEA部署Docker应用指南分享

《使用IDEA部署Docker应用指南分享》本文介绍了使用IDEA部署Docker应用的四步流程:创建Dockerfile、配置IDEADocker连接、设置运行调试环境、构建运行镜像,并强调需准备本... 目录一、创建 dockerfile 配置文件二、配置 IDEA 的 Docker 连接三、配置 Do

Android Paging 分页加载库使用实践

《AndroidPaging分页加载库使用实践》AndroidPaging库是Jetpack组件的一部分,它提供了一套完整的解决方案来处理大型数据集的分页加载,本文将深入探讨Paging库... 目录前言一、Paging 库概述二、Paging 3 核心组件1. PagingSource2. Pager3.

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

python运用requests模拟浏览器发送请求过程

《python运用requests模拟浏览器发送请求过程》模拟浏览器请求可选用requests处理静态内容,selenium应对动态页面,playwright支持高级自动化,设置代理和超时参数,根据需... 目录使用requests库模拟浏览器请求使用selenium自动化浏览器操作使用playwright

python使用try函数详解

《python使用try函数详解》Pythontry语句用于异常处理,支持捕获特定/多种异常、else/final子句确保资源释放,结合with语句自动清理,可自定义异常及嵌套结构,灵活应对错误场景... 目录try 函数的基本语法捕获特定异常捕获多个异常使用 else 子句使用 finally 子句捕获所

Mysql中设计数据表的过程解析

《Mysql中设计数据表的过程解析》数据库约束通过NOTNULL、UNIQUE、DEFAULT、主键和外键等规则保障数据完整性,自动校验数据,减少人工错误,提升数据一致性和业务逻辑严谨性,本文介绍My... 目录1.引言2.NOT NULL——制定某列不可以存储NULL值2.UNIQUE——保证某一列的每一