随机游走问题的神奇应用(一)

2023-11-30 05:32

本文主要是介绍随机游走问题的神奇应用(一),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

泊松方程的随机游走求解

    • 一.问题的提出
    • 二.问题的求解
    • 三.代码求解

可以用monteCarlo方法构建一个随机游走过程来求解偏微分方程。

一.问题的提出

​ 求解二维泊松方程的第一边值问题如下:
∂ 2 u ( P ) ∂ x + ∂ 2 u ( P ) ∂ y 2 = q ( P ) P ( x , y ) ∈ D \frac{\partial^2 u(P)}{\partial x} + \frac{\partial^2 u(P)}{\partial y^2} = q(P)\quad P(x,y) \in D\\ x2u(P)+y22u(P)=q(P)P(x,y)D
​ 边界条件为:
u ( Q ) = f ( Q ) Q ( x , y ) ∈ Γ = ∂ D u(Q) = f(Q)\quad Q(x,y)\in \Gamma = \partial D u(Q)=f(Q)Q(x,y)Γ=D

二.问题的求解

如下图所示如果我们要求在 P ( x ∗ , y ∗ ) P(x^*,y^*) P(x,y)处的值,设求解步长为 h h h。我们就将原来的方程差分化:
u ( x + h , y ) + u ( x − h , y ) − 2 u ( x , y ) h 2 + u ( x , y + h ) + u ( x , y − h ) − 2 u ( x , y ) h 2 = q ( x , y ) \frac{u(x+h,y)+u(x-h,y) -2u(x,y)}{h^2}+\frac{u(x,y+h)+u(x,y-h) -2u(x,y)}{h^2} = q(x,y) h2u(x+h,y)+u(xh,y)2u(x,y)+h2u(x,y+h)+u(x,yh)2u(x,y)=q(x,y)
可以化成如下差分形式:
u = − h 2 4 q + ∑ i = 1 4 u 1 i u = -\frac{h^2}{4}q+\sum_{i= 1}^4u_{1i} u=4h2q+i=14u1i
其中 P 1 i P_{1i} P1i的含义如下图所示:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-FS0WKT5q-1608990753380)(D:\文件\2020 09 19\美赛软件\h图.png)]

我们假设方程的定义区域为下图,黑点为边界 Γ \Gamma Γ上的点,白点为内部 D D D上的点。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-dR9Iys64-1608990753383)(D:\文件\2020 09 19\美赛软件\截图.png)]

我们定义一个从 P ( x ∗ , y ∗ ) P(x^*,y^*) P(x,y)开始的游走路线:
ρ P : P → P 1 → P 2 → P 3 . . . → P k − 1 → Q ∈ Γ \rho_P :P\rightarrow P_1 \rightarrow P_2 \rightarrow P_3...\rightarrow P_{k-1}\rightarrow Q\in \Gamma ρP:PP1P2P3...Pk1QΓ
其中的点 P i P_i Pi是由点 P i − 1 P_{i-1} Pi1进过以下规则 f f f得到的:
f : P i − 1 → P i f:P_{i-1} \rightarrow P_i f:Pi1Pi
f f f:我们产生一个随机数 r ∈ [ 0 , 1 ] r\in[0,1] r[0,1]:

r r r P i − 1 P_{i-1} Pi1 P i P_i Pi
[ 0 , 0.25 ] [0,0.25] [0,0.25] P i − 1 ( x ∗ , y ∗ ) P_{i-1}(x^*,y^*) Pi1(x,y) P i ( x ∗ + h , y ∗ ) P_i(x^*+h,y^*) Pi(x+h,y)
[ 0.25 , 0.5 ] [0.25,0.5] [0.25,0.5] P i − 1 ( x ∗ , y ∗ ) P_{i-1}(x^*,y^*) Pi1(x,y) P i ( x ∗ , y ∗ + h ) P_i(x^*,y^*+h) Pi(x,y+h)
[ 0.5 , 0.75 ] [0.5,0.75] [0.5,0.75] P i − 1 ( x ∗ , y ∗ ) P_{i-1}(x^*,y^*) Pi1(x,y) P i ( x ∗ − h , y ∗ ) P_i(x^*-h,y^*) Pi(xh,y)
[ 0.75 , 1 ] [0.75,1] [0.75,1] P i − 1 ( x ∗ , y ∗ ) P_{i-1}(x^*,y^*) Pi1(x,y) P i ( x ∗ , y ∗ − h ) P_i(x^*,y^*-h) Pi(x,yh)

表示 P i − 1 P_{i-1} Pi1分别有 1 4 \frac{1}{4} 41的概率到 P 11 , P 12 , P 13 , P 14 P_{11},P_{12},P_{13},P_{14} P11,P12,P13,P14,即有相同的概率前后左右随机移动,到终点为止。

那么在这样的规则下会生成一条路线 ρ P \rho_P ρP。此时我们建立其以下的映射关系:
g : ρ p → u ( P ) g:\rho_p \rightarrow u(P) g:ρpu(P)
即是从 P P P点出发的一条路线 ρ P \rho_P ρP到该点的数值解 u ( P ) u(P) u(P)的一个映射关系 g g g

现在我们直接给出这个关系:
g : u ( P ) = − h 2 4 ∑ i = 1 k − 1 q ( P i ) + f ( Q ) g:u(P) = -\frac{h^2}{4}\sum_{i = 1}^{k-1}q(P_i)+f(Q) g:u(P)=4h2i=1k1q(Pi)+f(Q)
那么我们从这一次随机游走 ρ P \rho_P ρP映射出了一次的 u ( P ) u(P) u(P)。这个结果肯定是不精确的,我们如果设每次的结果都是一次随机变量 ζ P = g ( ρ P ) \zeta_P = g(\rho_P) ζP=g(ρP),那么可以证明的是 E ζ P = u ( P ) E\zeta_P = u(P) EζP=u(P),具体证明过程忽略。我们利用这个结论可以由大数定律:
u ( P ) ∼ 1 N ∑ i = 1 N ζ P i u(P) \sim\frac{1}{N}\sum_{i =1}^N\zeta_{Pi} u(P)N1i=1NζPi
即通过多次模拟随机游走的过程求其均值用来表示当前的解 u ( P ) u(P) u(P)

三.代码求解

假设我们要求解的是以下方程:
∂ 2 u ∂ x + ∂ 2 u ∂ y 2 = 1 \frac{\partial^2 u}{\partial x} + \frac{\partial^2 u}{\partial y^2} =1 \\ x2u+y22u=1
边界 Γ : x 2 + y 2 = 2 \Gamma:x^2+y^2 =2 Γ:x2+y2=2。在此边界上:
u ( Γ ) = 1 2 u(\Gamma) = \frac{1}{2} u(Γ)=21
现求 u ( 0 , 1 ) u(0,1) u(0,1)的值。

理论上该方程的解析解为 u ( x , y ) = x 2 + y 2 4 u(x,y) = \frac{x^2+y^2}{4} u(x,y)=4x2+y2,因此 u ( 0 , 1 ) = 1 4 u(0,1) = \frac{1}{4} u(0,1)=41。在这里,我们给出求解该方程的函数并且显示当前的随机游走过程:

function [uFinal,zeta] = possionRandom(xPoint,yPoint,h,N)
%UNTITLED 求 Deltea u = 1;在u(x^2+y^2 = 2) = 0.5边界条件
%   [xPoint,yPoint]表示该点坐标,h仿真步长,N仿真次数
q = @(x,y)1;  % 函数
f = @(x,y)(0.5);
u = zeros(1,N);
for i = 1:NsumV = 0;xValue = xPoint;yValue = yPoint;P = [xValue ,yValue];%以下是游走过程while(1)if (xValue)^2+(yValue)^2>=2P = [P;xValue,yValue];break;endrandNumber = randsrc(1,1,[[0 1 2 3];[0.25 0.25 0.25 0.25]]);switch (randNumber)case 0xValue = xValue + h;yValue = yValue;case 1xValue = xValue ;yValue = yValue + h;case 2xValue = xValue - h ;yValue = yValue ;    case 3xValue = xValue;yValue = yValue - h;endP = [P;xValue,yValue];end%以下是画图过程if i == 1subplot(121);grid on;plot(P(:,1),P(:,2),'b.-');title('第一次轨迹');end%以下是计算过程[m,n] = size(P);for j = 1:m-1if isnan(q(P(j,1),P(j,2))) == 1q(P(j,1),P(j,2)) = q(h,h);endsumV = sumV + q(P(j,1),P(j,2));endzeta(i) = -h^2/4*sumV + f(P(m,1),P(m,2));u(i) = sum(zeta(1:i))/i;
end
subplot(122);
grid on ;
uFinal = u(N);
plot(1:N,u,'r');
xlabel('次数');
ylabel('进化曲线');
title('收敛过程');
end

在命令行求解 u ( 0 , 1 ) u(0,1) u(0,1)的值如下,设置步长为 h = 0.01 h = 0.01 h=0.01,仿真次数 N = 100 N = 100 N=100

>> [uFinal,zeta] = possionRandom(0,1,0.01,100);

得到如下图形:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-ZsOWq3gq-1608990753386)(D:\文件\2020 09 19\美赛软件\随机游走1.png)]

最终结果为 0.2353 0.2353 0.2353。可以发现还是有点误差的。

关键是这玩意如果步长设置的比较小的话就会一直游走。所以运行的时间就会比较长。

这篇关于随机游走问题的神奇应用(一)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/435809

相关文章

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

深入浅出SpringBoot WebSocket构建实时应用全面指南

《深入浅出SpringBootWebSocket构建实时应用全面指南》WebSocket是一种在单个TCP连接上进行全双工通信的协议,这篇文章主要为大家详细介绍了SpringBoot如何集成WebS... 目录前言为什么需要 WebSocketWebSocket 是什么Spring Boot 如何简化 We

解决RocketMQ的幂等性问题

《解决RocketMQ的幂等性问题》重复消费因调用链路长、消息发送超时或消费者故障导致,通过生产者消息查询、Redis缓存及消费者唯一主键可以确保幂等性,避免重复处理,本文主要介绍了解决RocketM... 目录造成重复消费的原因解决方法生产者端消费者端代码实现造成重复消费的原因当系统的调用链路比较长的时

Java Stream流之GroupBy的用法及应用场景

《JavaStream流之GroupBy的用法及应用场景》本教程将详细介绍如何在Java中使用Stream流的groupby方法,包括基本用法和一些常见的实际应用场景,感兴趣的朋友一起看看吧... 目录Java Stream流之GroupBy的用法1. 前言2. 基础概念什么是 GroupBy?Stream

python中列表应用和扩展性实用详解

《python中列表应用和扩展性实用详解》文章介绍了Python列表的核心特性:有序数据集合,用[]定义,元素类型可不同,支持迭代、循环、切片,可执行增删改查、排序、推导式及嵌套操作,是常用的数据处理... 目录1、列表定义2、格式3、列表是可迭代对象4、列表的常见操作总结1、列表定义是处理一组有序项目的

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

kkFileView启动报错:报错2003端口占用的问题及解决

《kkFileView启动报错:报错2003端口占用的问题及解决》kkFileView启动报错因office组件2003端口未关闭,解决:查杀占用端口的进程,终止Java进程,使用shutdown.s... 目录原因解决总结kkFileViewjavascript启动报错启动office组件失败,请检查of

C#中的Converter的具体应用

《C#中的Converter的具体应用》C#中的Converter提供了一种灵活的类型转换机制,本文详细介绍了Converter的基本概念、使用场景,具有一定的参考价值,感兴趣的可以了解一下... 目录Converter的基本概念1. Converter委托2. 使用场景布尔型转换示例示例1:简单的字符串到

Spring Boot Actuator应用监控与管理的详细步骤

《SpringBootActuator应用监控与管理的详细步骤》SpringBootActuator是SpringBoot的监控工具,提供健康检查、性能指标、日志管理等核心功能,支持自定义和扩展端... 目录一、 Spring Boot Actuator 概述二、 集成 Spring Boot Actuat

PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例

《PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例》词嵌入解决NLP维度灾难,捕捉语义关系,PyTorch的nn.Embedding模块提供灵活实现,支持参数配置、预训练及变长... 目录一、词嵌入(Word Embedding)简介为什么需要词嵌入?二、PyTorch中的nn.Em