【机器人的眼睛】机器视觉在汽车零部件检测中的应用

2023-11-29 17:10

本文主要是介绍【机器人的眼睛】机器视觉在汽车零部件检测中的应用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

随着汽车加工工艺技术的提升以及模块化趋势的呈现,汽车零部件的结构也越来越复杂,外形也呈现出多种多样的趋势。这给成型后的产品尺寸检测带来了一定的困难。

传统的汽车零部件尺寸检测方法

由于条件所限,传统的汽车零部件尺寸检测方法只能采用手动的方式,专业的检测人员手持千分尺等测量工具对产品进行各个部位的尺寸测量。但由于汽车零部件的形状非常复杂,往往一个产品上存在的测点多达数十个,这样测量一个产品就需要花费大量的时间,存在着测量效率低、采样精度低、采样频次低、数据遗漏以及人工输入错误等问题,同时这种测量也不适用于现代化的管理,无法应对数据处理的实时性和数据监管等。因此,工业质检的智能化赋能已经成为节省成本,提高产能的必然趋势。

智能质检难题

但是向智能质检转型的过程并不顺利,首先缺陷检测较复杂,主要包括内部材质检测、尺寸形位检测及外观缺陷检测。许多企业前期也尝试过组建算法团队做AI开发,解决检测智能化问题,但组建算法团队所需的算法人员、投入研究过程的时间成本、AI训练需要投入的服务器等机器成本累加起来,预估达到百万级,负担过重。

汽车制造商在智能化转型的过程中主要遇到会以下主要问题:

  1. 如何降低业务探索阶段的成本投入?
  2. 如何对瑕疵缺陷做到精确的标注,从而提供高质量的训练数据?
  3. 如何收集到各种瑕疵缺陷的数据,弥补缺陷样本少的痛点?
  4. 如何适配各种硬件,简单高效完成部署工作?如何保证预测效率?

 那么,跑码地Coovally-智能AI视觉平台就是最好的助手!

Coovally针对高精密制造中部件和产品的表面极微瑕疵、微结构缺陷、大范围一致性、高速高效等问题能够形成一整套有效的解决方案体现了“以数据为中心”或“数据驱动”的AI落地技术。 是解决“实验室结果好于实际运行效果”这一痛点的核心利器。

Coovally基于模块化的工程方式,以提升数据质量为中心,提供智能数据标注模块、数据增强工程化流程模块、AI模型库(包含150+常规机器学习与深度学习模型)、项目管理与分享模块、模型适配与部署模块。并且支持云端模型转换和边端模型转换。云端模型转换指转换后的模型可部署在云端的服务器上进行推理,边端模型转换指转换后的模型可部署在边缘端的设备上进行推理。从根源上解决“高昂价格、模型单一”的问题,可一次性部署平台,自由使用所有模型。

汽车轴承的缺陷检测为例,根据缺陷类型选择合适的任务类型:

端面与外径缺陷检测因需要定位到具体的缺陷位置,且缺陷特征较为一致,因此适用于物体检测模型;内径锈蚀检测因需要定位到锈斑的具体位置,且锈斑大小、形状不统一,因此适用于图像分割模型。

接下来汽车轴承的缺陷检测着手数据准备→模型训练→模型部署

数据准备

汽车轴承待检测的瑕疵缺陷过小,标注难度大,同时标注数量大,人力成本高。在跑码地Coovally的标注界面上,可以按需缩放或对瑕疵缺陷进行增强,从而进行精准标注。

模型训练

部分瑕疵缺陷的样本量少,如何提升数据利用率?

借由跑码地Coovally的图片增强功能,可将一张图片衍生多张图片,提高数据利用率。同时,通过自动超参搜索策略,完成相对复杂场景数据训练的利用率,同时可以产出基于这个场景最优的参数组合,达到更高的模型精度。如果目标检测物过小,可以选择小目标检测算法无代码训练出精确率达90%的可用模型。

模型部署

模型训练完成后可直接下载pt文件进行适配,简便又快捷。

基于跑码地Coovally机器学习检测算法,使用工业相机对产线上的轴承进行图片拍摄,通过传感器获取轴承的几何参数绘制成图像,生产现场的服务器进行图像分类和检测,判断轴承的外观质量是否符合要求,可检测轴承的擦伤、磕碰伤、磨伤、削料、锈蚀等瑕疵。最终达到缩减开发人员、提高开发效率、简化模型部署的效果。

实际上,机器学习检测算法在产品检测方面的应用还有很大的潜力可供挖掘。不仅在汽车零部件行业,在电子、半导体、3C、铁路、研究院所都有很强劲的需求,跑码地Coovally的最终目标就是帮助更多企业低成本实现AI算法自由。

这篇关于【机器人的眼睛】机器视觉在汽车零部件检测中的应用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/433649

相关文章

Nginx内置变量应用场景分析

《Nginx内置变量应用场景分析》Nginx内置变量速查表,涵盖请求URI、客户端信息、服务器信息、文件路径、响应与性能等类别,这篇文章给大家介绍Nginx内置变量应用场景分析,感兴趣的朋友跟随小编一... 目录1. Nginx 内置变量速查表2. 核心变量详解与应用场景3. 实际应用举例4. 注意事项Ng

Java中的随机数生成案例从范围字符串到动态区间应用

《Java中的随机数生成案例从范围字符串到动态区间应用》本文介绍了在Java中生成随机数的多种方法,并通过两个案例解析如何根据业务需求生成特定范围的随机数,本文通过两个实际案例详细介绍如何在java中... 目录Java中的随机数生成:从范围字符串到动态区间应用引言目录1. Java中的随机数生成基础基本随

利用Python操作Word文档页码的实际应用

《利用Python操作Word文档页码的实际应用》在撰写长篇文档时,经常需要将文档分成多个节,每个节都需要单独的页码,下面:本文主要介绍利用Python操作Word文档页码的相关资料,文中通过代码... 目录需求:文档详情:要求:该程序的功能是:总结需求:一次性处理24个文档的页码。文档详情:1、每个

C#自动化实现检测并删除PDF文件中的空白页面

《C#自动化实现检测并删除PDF文件中的空白页面》PDF文档在日常工作和生活中扮演着重要的角色,本文将深入探讨如何使用C#编程语言,结合强大的PDF处理库,自动化地检测并删除PDF文件中的空白页面,感... 目录理解PDF空白页的定义与挑战引入Spire.PDF for .NET库核心实现:检测并删除空白页

Java中的分布式系统开发基于 Zookeeper 与 Dubbo 的应用案例解析

《Java中的分布式系统开发基于Zookeeper与Dubbo的应用案例解析》本文将通过实际案例,带你走进基于Zookeeper与Dubbo的分布式系统开发,本文通过实例代码给大家介绍的非常详... 目录Java 中的分布式系统开发基于 Zookeeper 与 Dubbo 的应用案例一、分布式系统中的挑战二

Java 缓存框架 Caffeine 应用场景解析

《Java缓存框架Caffeine应用场景解析》文章介绍Caffeine作为高性能Java本地缓存框架,基于W-TinyLFU算法,支持异步加载、灵活过期策略、内存安全机制及统计监控,重点解析其... 目录一、Caffeine 简介1. 框架概述1.1 Caffeine的核心优势二、Caffeine 基础2

使用Node.js和PostgreSQL构建数据库应用

《使用Node.js和PostgreSQL构建数据库应用》PostgreSQL是一个功能强大的开源关系型数据库,而Node.js是构建高效网络应用的理想平台,结合这两个技术,我们可以创建出色的数据驱动... 目录初始化项目与安装依赖建立数据库连接执行CRUD操作查询数据插入数据更新数据删除数据完整示例与最佳

PHP应用中处理限流和API节流的最佳实践

《PHP应用中处理限流和API节流的最佳实践》限流和API节流对于确保Web应用程序的可靠性、安全性和可扩展性至关重要,本文将详细介绍PHP应用中处理限流和API节流的最佳实践,下面就来和小编一起学习... 目录限流的重要性在 php 中实施限流的最佳实践使用集中式存储进行状态管理(如 Redis)采用滑动

深入浅出Spring中的@Autowired自动注入的工作原理及实践应用

《深入浅出Spring中的@Autowired自动注入的工作原理及实践应用》在Spring框架的学习旅程中,@Autowired无疑是一个高频出现却又让初学者头疼的注解,它看似简单,却蕴含着Sprin... 目录深入浅出Spring中的@Autowired:自动注入的奥秘什么是依赖注入?@Autowired

PostgreSQL简介及实战应用

《PostgreSQL简介及实战应用》PostgreSQL是一种功能强大的开源关系型数据库管理系统,以其稳定性、高性能、扩展性和复杂查询能力在众多项目中得到广泛应用,本文将从基础概念讲起,逐步深入到高... 目录前言1. PostgreSQL基础1.1 PostgreSQL简介1.2 基础语法1.3 数据库