使用opencv将sRGB格式的图片转换为DCI-P3格式【sRGB】【DCI-P3】

2023-11-29 11:45

本文主要是介绍使用opencv将sRGB格式的图片转换为DCI-P3格式【sRGB】【DCI-P3】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

要将图像从 sRGB 格式转换为 DCI-P3 格式,您需要使用适当的线性转换矩阵。在 OpenCV 中,这通常涉及使用色彩转换函数,但 OpenCV 默认情况下不直接支持 sRGB 到 DCI-P3 的转换。因此,您需要手动计算并应用转换矩阵。

转换矩阵取决于两个色彩空间的原色和白点坐标。首先,您需要获取这两个色彩空间的色度坐标:

  • sRGB 色彩空间的原色坐标。
  • DCI-P3 色彩空间的原色坐标。

然后,您需要计算从 sRGB 到 XYZ 色彩空间的转换矩阵,以及从 XYZ 到 DCI-P3 的转换矩阵。最后,通过将这两个矩阵相乘,可以得到直接从 sRGB 到 DCI-P3 的转换矩阵。

这些矩阵的计算涉及一些复杂的线性代数运算。下面是这个过程的简化版本:

  1. 计算 sRGB 到 XYZ 的转换矩阵:这需要 sRGB 的原色和白点坐标。

  2. 计算 XYZ 到 DCI-P3 的转换矩阵:这需要 DCI-P3 的原色和白点坐标。

  3. 合并这两个矩阵:通过矩阵乘法,您可以获得一个直接从 sRGB 到 DCI-P3 的转换矩阵。

在 OpenCV 中应用这个转换矩阵:

#include <opencv2/opencv.hpp>cv::Mat convert_sRGB_to_DCIP3(const cv::Mat& src) {// 定义转换矩阵cv::Matx33f transformMatrix = {/* 这里填写计算得到的矩阵 */};cv::Mat dst;src.convertTo(dst, CV_32F); // 确保使用浮点数cv::transform(dst, dst, transformMatrix);return dst;
}int main() {cv::Mat sRGB_image = cv::imread("path_to_sRGB_image.jpg");cv::Mat DCIP3_image = convert_sRGB_to_DCIP3(sRGB_image);// 保存或处理转换后的图像
}

请注意,这段代码中的转换矩阵需要您根据具体的色彩空间参数进行计算和填写。这通常涉及色彩科学的知识,并且可能需要调整以满足您的精确需求。

要计算从 sRGB 到 DCI-P3 的转换矩阵,我们需要遵循以下步骤:

  1. 定义色彩空间的原色坐标和白点:sRGB 和 DCI-P3 色彩空间的原色(红、绿、蓝)坐标和白点坐标是已知的。

  2. 计算转换矩阵:首先,计算从 sRGB 到 CIE 1931 XYZ 色彩空间的转换矩阵,然后计算从 XYZ 到 DCI-P3 的转换矩阵。最后,将这两个矩阵相乘得到从 sRGB 直接到 DCI-P3 的转换矩阵。

sRGB 到 XYZ

sRGB 色彩空间的原色坐标和 D65 白点(x=0.3127, y=0.3290)可以用来计算 sRGB 到 XYZ 的转换矩阵。sRGB 到 XYZ 的标准转换矩阵通常如下所示:

[ 0.4124564  0.3575761  0.1804375 ]
[ 0.2126729  0.7151522  0.0721750 ]
[ 0.0193339  0.1191920  0.9503041 ]

XYZ 到 DCI-P3

DCI-P3 色彩空间的原色坐标和 D65 白点可以用来计算 XYZ 到 DCI-P3 的转换矩阵。DCI-P3 的原色坐标大致为:

  • 红色:(0.680, 0.320)
  • 绿色:(0.265, 0.690)
  • 蓝色:(0.150, 0.060)

使用这些坐标,您可以计算 XYZ 到 DCI-P3 的转换矩阵。这个计算相对复杂,涉及线性代数中的矩阵运算。

合并矩阵

最后,通过将 sRGB 到 XYZ 的矩阵与 XYZ 到 DCI-P3 的矩阵相乘,可以得到直接从 sRGB 到 DCI-P3 的转换矩阵。

由于这些计算相当复杂且超出了简单文本回复的范围,我建议使用专门的色彩管理软件或库来进行这些转换,或者在专业的色彩科学文献中查找已经计算好的转换矩阵。在实际应用中,这些转换通常涉及色彩管理系统(CMS),如 ICC 配置文件,以确保精确和一致的颜色再现。

要直接给出从 CIE 1931 XYZ 色彩空间到 DCI-P3 色彩空间的转换矩阵,我们需要使用 DCI-P3 色彩空间的原色坐标。假设我们使用 D65 白点(这是最常见的情况),DCI-P3 的原色坐标大致为:

  • 红色:(0.680, 0.320)
  • 绿色:(0.265, 0.690)
  • 蓝色:(0.150, 0.060)

使用这些坐标,我们可以构建一个从 XYZ 到 DCI-P3 的转换矩阵。这个过程涉及计算一个将这些原色坐标映射到 XYZ 轴的矩阵,然后将其逆转换应用于 XYZ 数据。

转换矩阵可以通过以下步骤计算得出:

  1. 构建原色坐标矩阵:使用 DCI-P3 的原色坐标构建一个矩阵。

  2. 计算白点适应:使用 D65 白点坐标进行白点适应。

  3. 计算逆矩阵:计算上述矩阵的逆矩阵,以便可以将其应用于 XYZ 数据。

基于上述坐标,转换矩阵(从 XYZ 到 DCI-P3)大致为:

[ 2.493496911941425   -0.9313836179191239  -0.40271078445071684 ]
[-0.8294889695615747   1.7626640603183463   0.023624685841943577]
[ 0.03584583024378447 -0.07617238926804182  0.9568845240076872  ]

请注意,这个矩阵是基于标准的原色坐标和 D65 白点计算得出的,但实际应用中可能会有所不同,具体取决于您的具体需求和使用的色彩管理系统。在实际应用这个矩阵之前,建议进行彻底的测试和验证,以确保颜色的准确转换。

bool ConvertImageFormat(const std::string &originPath,const std::string &targetPath, ImageFormat format){// 瀹氫箟sRGB鍒癤YZ鐨勮浆鎹㈢煩闃?cv::Mat sRGBToXYZ = (cv::Mat_<double>(3,3) <<0.4124564, 0.3575761, 0.1804375,0.2126729, 0.7151522, 0.0721750,0.0193339, 0.1191920, 0.9503041);static const std::vector<cv::Mat> MATRIX_ARR = {// IMAGE_DCI_P3(cv::Mat_<double>(3,3) <<2.493496911941425, -0.9313836179191239, -0.40271078445071684,-0.8294889695615747, 1.7626640603183463,  0.023624685841943577,0.03584583024378447, -0.07617238926804182, 0.9568845240076872),// IMAGE_BT_2020(cv::Mat_<double>(3,3) <<1.7166512, -0.3556708, -0.2533663,-0.6666844, 1.6164812, 0.0157685,0.0176399, -0.0427706, 0.9421031),// IMAGE_ADOBE_RGB(cv::Mat_<double>(3,3) <<2.0413690, -0.5649464, -0.3446944,-0.9692660, 1.8760108, 0.0415560,0.0134474, -0.1183897, 1.0154096),};Mat img = cv::imread(originPath);if (img.empty() == true) {return false;}switch (format) {case IMAGE_SRGB:cv::imwrite(targetPath, img);break;case IMAGE_DCI_P3:case IMAGE_BT_2020:case IMAGE_ADOBE_RGB:{Mat imgXYZ;// 灏唖RGB鍥惧儚杞崲涓篨YZcv::transform(img, imgXYZ, sRGBToXYZ);Mat imgRet;cv::transform(imgXYZ, imgRet, MATRIX_ARR[format - 1]);cv::imwrite(targetPath, imgRet);}break;default:return false;break;}return true;}
 // 定义sRGB到XYZ的转换矩阵static const cv::Mat s_sRGB_XYZ_MATRIX = (cv::Mat_<float>(3,3) <<0.4124564, 0.3575761, 0.1804375,0.2126729, 0.7151522, 0.0721750,0.0193339, 0.1191920, 0.9503041);cv::Mat Image_sRGB_DCI_P3(const cv::Mat &src){static const cv::Mat XYZ_DCI_P3_MATRIX = (cv::Mat_<float>(3,3) <<2.493496911941425, -0.9313836179191239, -0.40271078445071684,-0.8294889695615747, 1.7626640603183463,  0.023624685841943577,0.03584583024378447, -0.07617238926804182, 0.9568845240076872);cv::Mat dst = src;// 确保使用浮点数src.convertTo(dst, CV_32F);// 将sRGB图像转换为XYZcv::transform(dst, dst, s_sRGB_XYZ_MATRIX);// XYZ 转 DCI_P3cv::transform(dst, dst, XYZ_DCI_P3_MATRIX);return dst;}

这篇关于使用opencv将sRGB格式的图片转换为DCI-P3格式【sRGB】【DCI-P3】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/432695

相关文章

mysql8.0.43使用InnoDB Cluster配置主从复制

《mysql8.0.43使用InnoDBCluster配置主从复制》本文主要介绍了mysql8.0.43使用InnoDBCluster配置主从复制,文中通过示例代码介绍的非常详细,对大家的学习或者... 目录1、配置Hosts解析(所有服务器都要执行)2、安装mysql shell(所有服务器都要执行)3、

Vue3视频播放组件 vue3-video-play使用方式

《Vue3视频播放组件vue3-video-play使用方式》vue3-video-play是Vue3的视频播放组件,基于原生video标签开发,支持MP4和HLS流,提供全局/局部引入方式,可监听... 目录一、安装二、全局引入三、局部引入四、基本使用五、事件监听六、播放 HLS 流七、更多功能总结在 v

SpringBoot中ResponseEntity的使用方法举例详解

《SpringBoot中ResponseEntity的使用方法举例详解》ResponseEntity是Spring的一个用于表示HTTP响应的全功能对象,它可以包含响应的状态码、头信息及响应体内容,下... 目录一、ResponseEntity概述基本特点:二、ResponseEntity的基本用法1. 创

使用Java填充Word模板的操作指南

《使用Java填充Word模板的操作指南》本文介绍了Java填充Word模板的实现方法,包括文本、列表和复选框的填充,首先通过Word域功能设置模板变量,然后使用poi-tl、aspose-words... 目录前言一、设置word模板普通字段列表字段复选框二、代码1. 引入POM2. 模板放入项目3.代码

使用EasyPoi快速导出Word文档功能的实现步骤

《使用EasyPoi快速导出Word文档功能的实现步骤》EasyPoi是一个基于ApachePOI的开源Java工具库,旨在简化Excel和Word文档的操作,本文将详细介绍如何使用EasyPoi快速... 目录一、准备工作1、引入依赖二、准备好一个word模版文件三、编写导出方法的工具类四、在Export

Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题

《Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题》在爬虫工程里,“HTTPS”是绕不开的话题,HTTPS为传输加密提供保护,同时也给爬虫带来证书校验、... 目录一、核心问题与优先级检查(先问三件事)二、基础示例:requests 与证书处理三、高并发选型:

MySQL之搜索引擎使用解读

《MySQL之搜索引擎使用解读》MySQL存储引擎是数据存储和管理的核心组件,不同引擎(如InnoDB、MyISAM)采用不同机制,InnoDB支持事务与行锁,适合高并发场景;MyISAM不支持事务,... 目录mysql的存储引擎是什么MySQL存储引擎的功能MySQL的存储引擎的分类查看存储引擎1.命令

Python sys模块的使用及说明

《Pythonsys模块的使用及说明》Pythonsys模块是核心工具,用于解释器交互与运行时控制,涵盖命令行参数处理、路径修改、强制退出、I/O重定向、系统信息获取等功能,适用于脚本开发与调试,需... 目录python sys 模块详解常用功能与代码示例获取命令行参数修改模块搜索路径强制退出程序标准输入

5 种使用Python自动化处理PDF的实用方法介绍

《5种使用Python自动化处理PDF的实用方法介绍》自动化处理PDF文件已成为减少重复工作、提升工作效率的重要手段,本文将介绍五种实用方法,从内置工具到专业库,帮助你在Python中实现PDF任务... 目录使用内置库(os、subprocess)调用外部工具使用 PyPDF2 进行基本 PDF 操作使用

vue监听属性watch的用法及使用场景详解

《vue监听属性watch的用法及使用场景详解》watch是vue中常用的监听器,它主要用于侦听数据的变化,在数据发生变化的时候执行一些操作,:本文主要介绍vue监听属性watch的用法及使用场景... 目录1. 监听属性 watch2. 常规用法3. 监听对象和route变化4. 使用场景附Watch 的