使用opencv将sRGB格式的图片转换为DCI-P3格式【sRGB】【DCI-P3】

2023-11-29 11:45

本文主要是介绍使用opencv将sRGB格式的图片转换为DCI-P3格式【sRGB】【DCI-P3】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

要将图像从 sRGB 格式转换为 DCI-P3 格式,您需要使用适当的线性转换矩阵。在 OpenCV 中,这通常涉及使用色彩转换函数,但 OpenCV 默认情况下不直接支持 sRGB 到 DCI-P3 的转换。因此,您需要手动计算并应用转换矩阵。

转换矩阵取决于两个色彩空间的原色和白点坐标。首先,您需要获取这两个色彩空间的色度坐标:

  • sRGB 色彩空间的原色坐标。
  • DCI-P3 色彩空间的原色坐标。

然后,您需要计算从 sRGB 到 XYZ 色彩空间的转换矩阵,以及从 XYZ 到 DCI-P3 的转换矩阵。最后,通过将这两个矩阵相乘,可以得到直接从 sRGB 到 DCI-P3 的转换矩阵。

这些矩阵的计算涉及一些复杂的线性代数运算。下面是这个过程的简化版本:

  1. 计算 sRGB 到 XYZ 的转换矩阵:这需要 sRGB 的原色和白点坐标。

  2. 计算 XYZ 到 DCI-P3 的转换矩阵:这需要 DCI-P3 的原色和白点坐标。

  3. 合并这两个矩阵:通过矩阵乘法,您可以获得一个直接从 sRGB 到 DCI-P3 的转换矩阵。

在 OpenCV 中应用这个转换矩阵:

#include <opencv2/opencv.hpp>cv::Mat convert_sRGB_to_DCIP3(const cv::Mat& src) {// 定义转换矩阵cv::Matx33f transformMatrix = {/* 这里填写计算得到的矩阵 */};cv::Mat dst;src.convertTo(dst, CV_32F); // 确保使用浮点数cv::transform(dst, dst, transformMatrix);return dst;
}int main() {cv::Mat sRGB_image = cv::imread("path_to_sRGB_image.jpg");cv::Mat DCIP3_image = convert_sRGB_to_DCIP3(sRGB_image);// 保存或处理转换后的图像
}

请注意,这段代码中的转换矩阵需要您根据具体的色彩空间参数进行计算和填写。这通常涉及色彩科学的知识,并且可能需要调整以满足您的精确需求。

要计算从 sRGB 到 DCI-P3 的转换矩阵,我们需要遵循以下步骤:

  1. 定义色彩空间的原色坐标和白点:sRGB 和 DCI-P3 色彩空间的原色(红、绿、蓝)坐标和白点坐标是已知的。

  2. 计算转换矩阵:首先,计算从 sRGB 到 CIE 1931 XYZ 色彩空间的转换矩阵,然后计算从 XYZ 到 DCI-P3 的转换矩阵。最后,将这两个矩阵相乘得到从 sRGB 直接到 DCI-P3 的转换矩阵。

sRGB 到 XYZ

sRGB 色彩空间的原色坐标和 D65 白点(x=0.3127, y=0.3290)可以用来计算 sRGB 到 XYZ 的转换矩阵。sRGB 到 XYZ 的标准转换矩阵通常如下所示:

[ 0.4124564  0.3575761  0.1804375 ]
[ 0.2126729  0.7151522  0.0721750 ]
[ 0.0193339  0.1191920  0.9503041 ]

XYZ 到 DCI-P3

DCI-P3 色彩空间的原色坐标和 D65 白点可以用来计算 XYZ 到 DCI-P3 的转换矩阵。DCI-P3 的原色坐标大致为:

  • 红色:(0.680, 0.320)
  • 绿色:(0.265, 0.690)
  • 蓝色:(0.150, 0.060)

使用这些坐标,您可以计算 XYZ 到 DCI-P3 的转换矩阵。这个计算相对复杂,涉及线性代数中的矩阵运算。

合并矩阵

最后,通过将 sRGB 到 XYZ 的矩阵与 XYZ 到 DCI-P3 的矩阵相乘,可以得到直接从 sRGB 到 DCI-P3 的转换矩阵。

由于这些计算相当复杂且超出了简单文本回复的范围,我建议使用专门的色彩管理软件或库来进行这些转换,或者在专业的色彩科学文献中查找已经计算好的转换矩阵。在实际应用中,这些转换通常涉及色彩管理系统(CMS),如 ICC 配置文件,以确保精确和一致的颜色再现。

要直接给出从 CIE 1931 XYZ 色彩空间到 DCI-P3 色彩空间的转换矩阵,我们需要使用 DCI-P3 色彩空间的原色坐标。假设我们使用 D65 白点(这是最常见的情况),DCI-P3 的原色坐标大致为:

  • 红色:(0.680, 0.320)
  • 绿色:(0.265, 0.690)
  • 蓝色:(0.150, 0.060)

使用这些坐标,我们可以构建一个从 XYZ 到 DCI-P3 的转换矩阵。这个过程涉及计算一个将这些原色坐标映射到 XYZ 轴的矩阵,然后将其逆转换应用于 XYZ 数据。

转换矩阵可以通过以下步骤计算得出:

  1. 构建原色坐标矩阵:使用 DCI-P3 的原色坐标构建一个矩阵。

  2. 计算白点适应:使用 D65 白点坐标进行白点适应。

  3. 计算逆矩阵:计算上述矩阵的逆矩阵,以便可以将其应用于 XYZ 数据。

基于上述坐标,转换矩阵(从 XYZ 到 DCI-P3)大致为:

[ 2.493496911941425   -0.9313836179191239  -0.40271078445071684 ]
[-0.8294889695615747   1.7626640603183463   0.023624685841943577]
[ 0.03584583024378447 -0.07617238926804182  0.9568845240076872  ]

请注意,这个矩阵是基于标准的原色坐标和 D65 白点计算得出的,但实际应用中可能会有所不同,具体取决于您的具体需求和使用的色彩管理系统。在实际应用这个矩阵之前,建议进行彻底的测试和验证,以确保颜色的准确转换。

bool ConvertImageFormat(const std::string &originPath,const std::string &targetPath, ImageFormat format){// 瀹氫箟sRGB鍒癤YZ鐨勮浆鎹㈢煩闃?cv::Mat sRGBToXYZ = (cv::Mat_<double>(3,3) <<0.4124564, 0.3575761, 0.1804375,0.2126729, 0.7151522, 0.0721750,0.0193339, 0.1191920, 0.9503041);static const std::vector<cv::Mat> MATRIX_ARR = {// IMAGE_DCI_P3(cv::Mat_<double>(3,3) <<2.493496911941425, -0.9313836179191239, -0.40271078445071684,-0.8294889695615747, 1.7626640603183463,  0.023624685841943577,0.03584583024378447, -0.07617238926804182, 0.9568845240076872),// IMAGE_BT_2020(cv::Mat_<double>(3,3) <<1.7166512, -0.3556708, -0.2533663,-0.6666844, 1.6164812, 0.0157685,0.0176399, -0.0427706, 0.9421031),// IMAGE_ADOBE_RGB(cv::Mat_<double>(3,3) <<2.0413690, -0.5649464, -0.3446944,-0.9692660, 1.8760108, 0.0415560,0.0134474, -0.1183897, 1.0154096),};Mat img = cv::imread(originPath);if (img.empty() == true) {return false;}switch (format) {case IMAGE_SRGB:cv::imwrite(targetPath, img);break;case IMAGE_DCI_P3:case IMAGE_BT_2020:case IMAGE_ADOBE_RGB:{Mat imgXYZ;// 灏唖RGB鍥惧儚杞崲涓篨YZcv::transform(img, imgXYZ, sRGBToXYZ);Mat imgRet;cv::transform(imgXYZ, imgRet, MATRIX_ARR[format - 1]);cv::imwrite(targetPath, imgRet);}break;default:return false;break;}return true;}
 // 定义sRGB到XYZ的转换矩阵static const cv::Mat s_sRGB_XYZ_MATRIX = (cv::Mat_<float>(3,3) <<0.4124564, 0.3575761, 0.1804375,0.2126729, 0.7151522, 0.0721750,0.0193339, 0.1191920, 0.9503041);cv::Mat Image_sRGB_DCI_P3(const cv::Mat &src){static const cv::Mat XYZ_DCI_P3_MATRIX = (cv::Mat_<float>(3,3) <<2.493496911941425, -0.9313836179191239, -0.40271078445071684,-0.8294889695615747, 1.7626640603183463,  0.023624685841943577,0.03584583024378447, -0.07617238926804182, 0.9568845240076872);cv::Mat dst = src;// 确保使用浮点数src.convertTo(dst, CV_32F);// 将sRGB图像转换为XYZcv::transform(dst, dst, s_sRGB_XYZ_MATRIX);// XYZ 转 DCI_P3cv::transform(dst, dst, XYZ_DCI_P3_MATRIX);return dst;}

这篇关于使用opencv将sRGB格式的图片转换为DCI-P3格式【sRGB】【DCI-P3】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/432695

相关文章

Python的端到端测试框架SeleniumBase使用解读

《Python的端到端测试框架SeleniumBase使用解读》:本文主要介绍Python的端到端测试框架SeleniumBase使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全... 目录SeleniumBase详细介绍及用法指南什么是 SeleniumBase?SeleniumBase

Java继承映射的三种使用方法示例

《Java继承映射的三种使用方法示例》继承在Java中扮演着重要的角色,它允许我们创建一个类(子类),该类继承另一个类(父类)的所有属性和方法,:本文主要介绍Java继承映射的三种使用方法示例,需... 目录前言一、单表继承(Single Table Inheritance)1-1、原理1-2、使用方法1-

Android DataBinding 与 MVVM使用详解

《AndroidDataBinding与MVVM使用详解》本文介绍AndroidDataBinding库,其通过绑定UI组件与数据源实现自动更新,支持双向绑定和逻辑运算,减少模板代码,结合MV... 目录一、DataBinding 核心概念二、配置与基础使用1. 启用 DataBinding 2. 基础布局

Android ViewBinding使用流程

《AndroidViewBinding使用流程》AndroidViewBinding是Jetpack组件,替代findViewById,提供类型安全、空安全和编译时检查,代码简洁且性能优化,相比Da... 目录一、核心概念二、ViewBinding优点三、使用流程1. 启用 ViewBinding (模块级

基于 HTML5 Canvas 实现图片旋转与下载功能(完整代码展示)

《基于HTML5Canvas实现图片旋转与下载功能(完整代码展示)》本文将深入剖析一段基于HTML5Canvas的代码,该代码实现了图片的旋转(90度和180度)以及旋转后图片的下载... 目录一、引言二、html 结构分析三、css 样式分析四、JavaScript 功能实现一、引言在 Web 开发中,

SpringBoot中使用Flux实现流式返回的方法小结

《SpringBoot中使用Flux实现流式返回的方法小结》文章介绍流式返回(StreamingResponse)在SpringBoot中通过Flux实现,优势包括提升用户体验、降低内存消耗、支持长连... 目录背景流式返回的核心概念与优势1. 提升用户体验2. 降低内存消耗3. 支持长连接与实时通信在Sp

Python如何去除图片干扰代码示例

《Python如何去除图片干扰代码示例》图片降噪是一个广泛应用于图像处理的技术,可以提高图像质量和相关应用的效果,:本文主要介绍Python如何去除图片干扰的相关资料,文中通过代码介绍的非常详细,... 目录一、噪声去除1. 高斯噪声(像素值正态分布扰动)2. 椒盐噪声(随机黑白像素点)3. 复杂噪声(如伪

Python中图片与PDF识别文本(OCR)的全面指南

《Python中图片与PDF识别文本(OCR)的全面指南》在数据爆炸时代,80%的企业数据以非结构化形式存在,其中PDF和图像是最主要的载体,本文将深入探索Python中OCR技术如何将这些数字纸张转... 目录一、OCR技术核心原理二、python图像识别四大工具库1. Pytesseract - 经典O

python使用库爬取m3u8文件的示例

《python使用库爬取m3u8文件的示例》本文主要介绍了python使用库爬取m3u8文件的示例,可以使用requests、m3u8、ffmpeg等库,实现获取、解析、下载视频片段并合并等步骤,具有... 目录一、准备工作二、获取m3u8文件内容三、解析m3u8文件四、下载视频片段五、合并视频片段六、错误

gitlab安装及邮箱配置和常用使用方式

《gitlab安装及邮箱配置和常用使用方式》:本文主要介绍gitlab安装及邮箱配置和常用使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1.安装GitLab2.配置GitLab邮件服务3.GitLab的账号注册邮箱验证及其分组4.gitlab分支和标签的