使用opencv将sRGB格式的图片转换为DCI-P3格式【sRGB】【DCI-P3】

2023-11-29 11:45

本文主要是介绍使用opencv将sRGB格式的图片转换为DCI-P3格式【sRGB】【DCI-P3】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

要将图像从 sRGB 格式转换为 DCI-P3 格式,您需要使用适当的线性转换矩阵。在 OpenCV 中,这通常涉及使用色彩转换函数,但 OpenCV 默认情况下不直接支持 sRGB 到 DCI-P3 的转换。因此,您需要手动计算并应用转换矩阵。

转换矩阵取决于两个色彩空间的原色和白点坐标。首先,您需要获取这两个色彩空间的色度坐标:

  • sRGB 色彩空间的原色坐标。
  • DCI-P3 色彩空间的原色坐标。

然后,您需要计算从 sRGB 到 XYZ 色彩空间的转换矩阵,以及从 XYZ 到 DCI-P3 的转换矩阵。最后,通过将这两个矩阵相乘,可以得到直接从 sRGB 到 DCI-P3 的转换矩阵。

这些矩阵的计算涉及一些复杂的线性代数运算。下面是这个过程的简化版本:

  1. 计算 sRGB 到 XYZ 的转换矩阵:这需要 sRGB 的原色和白点坐标。

  2. 计算 XYZ 到 DCI-P3 的转换矩阵:这需要 DCI-P3 的原色和白点坐标。

  3. 合并这两个矩阵:通过矩阵乘法,您可以获得一个直接从 sRGB 到 DCI-P3 的转换矩阵。

在 OpenCV 中应用这个转换矩阵:

#include <opencv2/opencv.hpp>cv::Mat convert_sRGB_to_DCIP3(const cv::Mat& src) {// 定义转换矩阵cv::Matx33f transformMatrix = {/* 这里填写计算得到的矩阵 */};cv::Mat dst;src.convertTo(dst, CV_32F); // 确保使用浮点数cv::transform(dst, dst, transformMatrix);return dst;
}int main() {cv::Mat sRGB_image = cv::imread("path_to_sRGB_image.jpg");cv::Mat DCIP3_image = convert_sRGB_to_DCIP3(sRGB_image);// 保存或处理转换后的图像
}

请注意,这段代码中的转换矩阵需要您根据具体的色彩空间参数进行计算和填写。这通常涉及色彩科学的知识,并且可能需要调整以满足您的精确需求。

要计算从 sRGB 到 DCI-P3 的转换矩阵,我们需要遵循以下步骤:

  1. 定义色彩空间的原色坐标和白点:sRGB 和 DCI-P3 色彩空间的原色(红、绿、蓝)坐标和白点坐标是已知的。

  2. 计算转换矩阵:首先,计算从 sRGB 到 CIE 1931 XYZ 色彩空间的转换矩阵,然后计算从 XYZ 到 DCI-P3 的转换矩阵。最后,将这两个矩阵相乘得到从 sRGB 直接到 DCI-P3 的转换矩阵。

sRGB 到 XYZ

sRGB 色彩空间的原色坐标和 D65 白点(x=0.3127, y=0.3290)可以用来计算 sRGB 到 XYZ 的转换矩阵。sRGB 到 XYZ 的标准转换矩阵通常如下所示:

[ 0.4124564  0.3575761  0.1804375 ]
[ 0.2126729  0.7151522  0.0721750 ]
[ 0.0193339  0.1191920  0.9503041 ]

XYZ 到 DCI-P3

DCI-P3 色彩空间的原色坐标和 D65 白点可以用来计算 XYZ 到 DCI-P3 的转换矩阵。DCI-P3 的原色坐标大致为:

  • 红色:(0.680, 0.320)
  • 绿色:(0.265, 0.690)
  • 蓝色:(0.150, 0.060)

使用这些坐标,您可以计算 XYZ 到 DCI-P3 的转换矩阵。这个计算相对复杂,涉及线性代数中的矩阵运算。

合并矩阵

最后,通过将 sRGB 到 XYZ 的矩阵与 XYZ 到 DCI-P3 的矩阵相乘,可以得到直接从 sRGB 到 DCI-P3 的转换矩阵。

由于这些计算相当复杂且超出了简单文本回复的范围,我建议使用专门的色彩管理软件或库来进行这些转换,或者在专业的色彩科学文献中查找已经计算好的转换矩阵。在实际应用中,这些转换通常涉及色彩管理系统(CMS),如 ICC 配置文件,以确保精确和一致的颜色再现。

要直接给出从 CIE 1931 XYZ 色彩空间到 DCI-P3 色彩空间的转换矩阵,我们需要使用 DCI-P3 色彩空间的原色坐标。假设我们使用 D65 白点(这是最常见的情况),DCI-P3 的原色坐标大致为:

  • 红色:(0.680, 0.320)
  • 绿色:(0.265, 0.690)
  • 蓝色:(0.150, 0.060)

使用这些坐标,我们可以构建一个从 XYZ 到 DCI-P3 的转换矩阵。这个过程涉及计算一个将这些原色坐标映射到 XYZ 轴的矩阵,然后将其逆转换应用于 XYZ 数据。

转换矩阵可以通过以下步骤计算得出:

  1. 构建原色坐标矩阵:使用 DCI-P3 的原色坐标构建一个矩阵。

  2. 计算白点适应:使用 D65 白点坐标进行白点适应。

  3. 计算逆矩阵:计算上述矩阵的逆矩阵,以便可以将其应用于 XYZ 数据。

基于上述坐标,转换矩阵(从 XYZ 到 DCI-P3)大致为:

[ 2.493496911941425   -0.9313836179191239  -0.40271078445071684 ]
[-0.8294889695615747   1.7626640603183463   0.023624685841943577]
[ 0.03584583024378447 -0.07617238926804182  0.9568845240076872  ]

请注意,这个矩阵是基于标准的原色坐标和 D65 白点计算得出的,但实际应用中可能会有所不同,具体取决于您的具体需求和使用的色彩管理系统。在实际应用这个矩阵之前,建议进行彻底的测试和验证,以确保颜色的准确转换。

bool ConvertImageFormat(const std::string &originPath,const std::string &targetPath, ImageFormat format){// 瀹氫箟sRGB鍒癤YZ鐨勮浆鎹㈢煩闃?cv::Mat sRGBToXYZ = (cv::Mat_<double>(3,3) <<0.4124564, 0.3575761, 0.1804375,0.2126729, 0.7151522, 0.0721750,0.0193339, 0.1191920, 0.9503041);static const std::vector<cv::Mat> MATRIX_ARR = {// IMAGE_DCI_P3(cv::Mat_<double>(3,3) <<2.493496911941425, -0.9313836179191239, -0.40271078445071684,-0.8294889695615747, 1.7626640603183463,  0.023624685841943577,0.03584583024378447, -0.07617238926804182, 0.9568845240076872),// IMAGE_BT_2020(cv::Mat_<double>(3,3) <<1.7166512, -0.3556708, -0.2533663,-0.6666844, 1.6164812, 0.0157685,0.0176399, -0.0427706, 0.9421031),// IMAGE_ADOBE_RGB(cv::Mat_<double>(3,3) <<2.0413690, -0.5649464, -0.3446944,-0.9692660, 1.8760108, 0.0415560,0.0134474, -0.1183897, 1.0154096),};Mat img = cv::imread(originPath);if (img.empty() == true) {return false;}switch (format) {case IMAGE_SRGB:cv::imwrite(targetPath, img);break;case IMAGE_DCI_P3:case IMAGE_BT_2020:case IMAGE_ADOBE_RGB:{Mat imgXYZ;// 灏唖RGB鍥惧儚杞崲涓篨YZcv::transform(img, imgXYZ, sRGBToXYZ);Mat imgRet;cv::transform(imgXYZ, imgRet, MATRIX_ARR[format - 1]);cv::imwrite(targetPath, imgRet);}break;default:return false;break;}return true;}
 // 定义sRGB到XYZ的转换矩阵static const cv::Mat s_sRGB_XYZ_MATRIX = (cv::Mat_<float>(3,3) <<0.4124564, 0.3575761, 0.1804375,0.2126729, 0.7151522, 0.0721750,0.0193339, 0.1191920, 0.9503041);cv::Mat Image_sRGB_DCI_P3(const cv::Mat &src){static const cv::Mat XYZ_DCI_P3_MATRIX = (cv::Mat_<float>(3,3) <<2.493496911941425, -0.9313836179191239, -0.40271078445071684,-0.8294889695615747, 1.7626640603183463,  0.023624685841943577,0.03584583024378447, -0.07617238926804182, 0.9568845240076872);cv::Mat dst = src;// 确保使用浮点数src.convertTo(dst, CV_32F);// 将sRGB图像转换为XYZcv::transform(dst, dst, s_sRGB_XYZ_MATRIX);// XYZ 转 DCI_P3cv::transform(dst, dst, XYZ_DCI_P3_MATRIX);return dst;}

这篇关于使用opencv将sRGB格式的图片转换为DCI-P3格式【sRGB】【DCI-P3】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/432695

相关文章

使用Python开发Markdown兼容公式格式转换工具

《使用Python开发Markdown兼容公式格式转换工具》在技术写作中我们经常遇到公式格式问题,例如MathML无法显示,LaTeX格式错乱等,所以本文我们将使用Python开发Markdown兼容... 目录一、工具背景二、环境配置(Windows 10/11)1. 创建conda环境2. 获取XSLT

Python中Flask模板的使用与高级技巧详解

《Python中Flask模板的使用与高级技巧详解》在Web开发中,直接将HTML代码写在Python文件中会导致诸多问题,Flask内置了Jinja2模板引擎,完美解决了这些问题,下面我们就来看看F... 目录一、模板渲染基础1.1 为什么需要模板引擎1.2 第一个模板渲染示例1.3 模板渲染原理二、模板

浅析如何使用xstream实现javaBean与xml互转

《浅析如何使用xstream实现javaBean与xml互转》XStream是一个用于将Java对象与XML之间进行转换的库,它非常简单易用,下面将详细介绍如何使用XStream实现JavaBean与... 目录1. 引入依赖2. 定义 JavaBean3. JavaBean 转 XML4. XML 转 J

使用Python创建一个功能完整的Windows风格计算器程序

《使用Python创建一个功能完整的Windows风格计算器程序》:本文主要介绍如何使用Python和Tkinter创建一个功能完整的Windows风格计算器程序,包括基本运算、高级科学计算(如三... 目录python实现Windows系统计算器程序(含高级功能)1. 使用Tkinter实现基础计算器2.

在.NET平台使用C#为PDF添加各种类型的表单域的方法

《在.NET平台使用C#为PDF添加各种类型的表单域的方法》在日常办公系统开发中,涉及PDF处理相关的开发时,生成可填写的PDF表单是一种常见需求,与静态PDF不同,带有**表单域的文档支持用户直接在... 目录引言使用 PdfTextBoxField 添加文本输入域使用 PdfComboBoxField

Git可视化管理工具(SourceTree)使用操作大全经典

《Git可视化管理工具(SourceTree)使用操作大全经典》本文详细介绍了SourceTree作为Git可视化管理工具的常用操作,包括连接远程仓库、添加SSH密钥、克隆仓库、设置默认项目目录、代码... 目录前言:连接Gitee or github,获取代码:在SourceTree中添加SSH密钥:Cl

Python中模块graphviz使用入门

《Python中模块graphviz使用入门》graphviz是一个用于创建和操作图形的Python库,本文主要介绍了Python中模块graphviz使用入门,具有一定的参考价值,感兴趣的可以了解一... 目录1.安装2. 基本用法2.1 输出图像格式2.2 图像style设置2.3 属性2.4 子图和聚

windows和Linux使用命令行计算文件的MD5值

《windows和Linux使用命令行计算文件的MD5值》在Windows和Linux系统中,您可以使用命令行(终端或命令提示符)来计算文件的MD5值,文章介绍了在Windows和Linux/macO... 目录在Windows上:在linux或MACOS上:总结在Windows上:可以使用certuti

CentOS和Ubuntu系统使用shell脚本创建用户和设置密码

《CentOS和Ubuntu系统使用shell脚本创建用户和设置密码》在Linux系统中,你可以使用useradd命令来创建新用户,使用echo和chpasswd命令来设置密码,本文写了一个shell... 在linux系统中,你可以使用useradd命令来创建新用户,使用echo和chpasswd命令来设

Python使用Matplotlib绘制3D曲面图详解

《Python使用Matplotlib绘制3D曲面图详解》:本文主要介绍Python使用Matplotlib绘制3D曲面图,在Python中,使用Matplotlib库绘制3D曲面图可以通过mpl... 目录准备工作绘制简单的 3D 曲面图绘制 3D 曲面图添加线框和透明度控制图形视角Matplotlib