2023-简单点-机器学习中常用的特殊函数,激活函数[sigmoid tanh ]

2023-11-29 05:52

本文主要是介绍2023-简单点-机器学习中常用的特殊函数,激活函数[sigmoid tanh ],希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

机器学习中的特殊函数

  • Sigmoid
  • softplus函数
  • tanh
  • ReLu(x)
  • Leaky-Relu
  • ELU
  • SiLu/ Swish
  • Mish
  • 伽玛函数
  • beta函数
  • Ref

Sigmoid

在这里插入图片描述

在这里插入图片描述

值域: 【0,1】
定义域:【负无穷,正无穷】
特殊点记忆: 经过 [0 , 0.5]
关键点[0,0.5]处的导数是 0.025

相关导数:
在这里插入图片描述

softplus函数

在这里插入图片描述

值域: (0,无穷大】
定义域:【负无穷,正无穷】
特殊点记忆: 经过 [0 , 1]
关键点[0,1]处的导数是 0.5,是sigmoid函数在x=0时的值
在这里插入图片描述
其中:

在这里插入图片描述

相关的导数性质:
在这里插入图片描述
关键点[0,1]处的导数是 0.5,是sigmoid函数在x=0时的值

在这里插入图片描述
在这里插入图片描述

tanh

tanh ⁡ ( x ) = e x − e − x e x + e − x \tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}} tanh(x)=ex+exexex

值域: 【-1,1】
定义域:【负无穷,正无穷】
特殊点记忆: 经过 [0 , 0]
关键点[0,0]处的导数是 1
在这里插入图片描述
相关导数:
d d x tanh ⁡ ( x ) = 1 − tanh ⁡ 2 ( x ) \frac{d}{dx}\tanh(x) = 1 - \tanh^2(x) dxdtanh(x)=1tanh2(x)
关键点[0,0]处的导数是 1

ReLu(x)

这个很简单
m a x ( 0 , x ) max(0,x) max(0,x)

在这里插入图片描述

Leaky-Relu

m a x ( α ∗ x , x ) max(\alpha * x, x) max(αx,x)

在这里插入图片描述

α = 0.1 \alpha = 0.1 α=0.1时:
在这里插入图片描述

ELU

在这里插入图片描述
ELU是结合了sigmoid的左侧软饱和性和ReLU的右侧无饱和性而提出的一种新的激活函数。从上面图中不难看到这一特点。右侧线性部分使得ELU可以缓解梯度消失问题,而左侧软饱和性能让ELU对输入变化或噪声更鲁棒。而且ELU的输出均值接近于0,所以没有严重的偏移现象,所以收敛速度更快。但是计算复杂了些
在这里插入图片描述

SiLu/ Swish

SiLU(Sigmoid Linear Unit)函数的 LaTeX 表达式是:

S i L U ( x ) = x ⋅ σ ( x ) SiLU(x) = x \cdot \sigma(x) SiLU(x)=xσ(x)

其中, σ ( x ) \sigma(x) σ(x) 表示 sigmoid 函数,即 σ ( x ) = 1 1 + e − x \sigma(x) = \frac{1}{1+e^{-x}} σ(x)=1+ex1

SiLU 函数的值域是 ( − ∞ , ∞ ) (-\infty, \infty) (,),因为该函数在输入值 x x x 的正负范围内都有输出。

SiLU 函数的导数表达式是:

( S i L U ( x ) ) ′ = σ ( x ) + x ⋅ σ ( x ) ⋅ ( 1 − σ ( x ) ) (SiLU(x))' = \sigma(x) + x \cdot \sigma(x) \cdot (1 - \sigma(x)) (SiLU(x))=σ(x)+xσ(x)(1σ(x))

这里的导数表达式是基于 SiLU 函数的定义和求导法则计算得出的。

需要注意的是,SiLU 函数是一种较为新型的激活函数,与传统的 sigmoid 和 ReLU 函数相比,它在某些任务上可能具有更好的性能表现。

相对于ReLU函数,SiLU函数在接近零时具有更平滑的曲线,并且由于其使用了sigmoid函数,可以使网络的输出范围在0和1之间。这使得SiLU在一些应用中比ReLU表现更好,例如在语音识别中使用SiLU比ReLU可以取得更好的效果。

在这里插入图片描述
导数:
在这里插入图片描述

Mish

Mish激活函数的LaTeX表达式是:

M i s h ( x ) = x ⋅ tanh ⁡ ( ln ⁡ ( 1 + e x ) ) Mish(x) = x \cdot \tanh(\ln(1 + e^x)) Mish(x)=xtanh(ln(1+ex))

Mish激活函数的值域是 ( − ∞ , ∞ ) (-\infty, \infty) (,),与SiLU函数类似,它在输入值 x x x的正负范围内都有输出。

关于Mish激活函数的导数,其LaTeX表达式相对复杂。根据导数的定义和链式法则,我们可以推导出:

( M i s h ( x ) ) ′ = tanh ⁡ ( ln ⁡ ( 1 + e x ) ) + 4 e x ( 1 + e x ) 2 (Mish(x))' = \tanh(\ln(1 + e^x)) + \frac{4e^x}{(1 + e^x)^2} (Mish(x))=tanh(ln(1+ex))+(1+ex)24ex

需要注意的是,Mish激活函数是一种相对较新的激活函数,被提出用于改善神经网络的性能。它具有一些有趣的特性,例如非单调性和自门控性质,这使得它在某些任务上可能具有更好的性能表现。与SiLU相比,Mish在一些实验中被证明能够取得更好的结果。

在这里插入图片描述

导数图:
在这里插入图片描述

引用原始论文,Mish 是“通过系统分析和实验发现并使 Swish 更加有效”。 就目前来说Mish可能是
最好的激活函数,但请原始论文仅在计算机视觉任务上对其进行了测试。

伽玛函数

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

beta函数

在这里插入图片描述

Ref

huaxiaozhuan

这篇关于2023-简单点-机器学习中常用的特殊函数,激活函数[sigmoid tanh ]的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/431700

相关文章

Python中bisect_left 函数实现高效插入与有序列表管理

《Python中bisect_left函数实现高效插入与有序列表管理》Python的bisect_left函数通过二分查找高效定位有序列表插入位置,与bisect_right的区别在于处理重复元素时... 目录一、bisect_left 基本介绍1.1 函数定义1.2 核心功能二、bisect_left 与

Android学习总结之Java和kotlin区别超详细分析

《Android学习总结之Java和kotlin区别超详细分析》Java和Kotlin都是用于Android开发的编程语言,它们各自具有独特的特点和优势,:本文主要介绍Android学习总结之Ja... 目录一、空安全机制真题 1:Kotlin 如何解决 Java 的 NullPointerExceptio

java中BigDecimal里面的subtract函数介绍及实现方法

《java中BigDecimal里面的subtract函数介绍及实现方法》在Java中实现减法操作需要根据数据类型选择不同方法,主要分为数值型减法和字符串减法两种场景,本文给大家介绍java中BigD... 目录Java中BigDecimal里面的subtract函数的意思?一、数值型减法(高精度计算)1.

C/C++ chrono简单使用场景示例详解

《C/C++chrono简单使用场景示例详解》:本文主要介绍C/C++chrono简单使用场景示例详解,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友... 目录chrono使用场景举例1 输出格式化字符串chrono使用场景China编程举例1 输出格式化字符串示

C++/类与对象/默认成员函数@构造函数的用法

《C++/类与对象/默认成员函数@构造函数的用法》:本文主要介绍C++/类与对象/默认成员函数@构造函数的用法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录名词概念默认成员函数构造函数概念函数特征显示构造函数隐式构造函数总结名词概念默认构造函数:不用传参就可以

C++类和对象之默认成员函数的使用解读

《C++类和对象之默认成员函数的使用解读》:本文主要介绍C++类和对象之默认成员函数的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、默认成员函数有哪些二、各默认成员函数详解默认构造函数析构函数拷贝构造函数拷贝赋值运算符三、默认成员函数的注意事项总结一

Java实现本地缓存的常用方案介绍

《Java实现本地缓存的常用方案介绍》本地缓存的代表技术主要有HashMap,GuavaCache,Caffeine和Encahche,这篇文章主要来和大家聊聊java利用这些技术分别实现本地缓存的方... 目录本地缓存实现方式HashMapConcurrentHashMapGuava CacheCaffe

Python函数返回多个值的多种方法小结

《Python函数返回多个值的多种方法小结》在Python中,函数通常用于封装一段代码,使其可以重复调用,有时,我们希望一个函数能够返回多个值,Python提供了几种不同的方法来实现这一点,需要的朋友... 目录一、使用元组(Tuple):二、使用列表(list)三、使用字典(Dictionary)四、 使

windows和Linux安装Jmeter与简单使用方式

《windows和Linux安装Jmeter与简单使用方式》:本文主要介绍windows和Linux安装Jmeter与简单使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录Windows和linux安装Jmeter与简单使用一、下载安装包二、JDK安装1.windows设

PyTorch中cdist和sum函数使用示例详解

《PyTorch中cdist和sum函数使用示例详解》torch.cdist是PyTorch中用于计算**两个张量之间的成对距离(pairwisedistance)**的函数,常用于点云处理、图神经网... 目录基本语法输出示例1. 简单的 2D 欧几里得距离2. 批量形式(3D Tensor)3. 使用不