如何基于gensim和Sklearn实现文本矢量化

2023-11-29 00:20

本文主要是介绍如何基于gensim和Sklearn实现文本矢量化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

     大家利用机器学习或深度学习开展文本分类或关联性分析之前,由于计算机只能分析数值型数据,而人类所熟悉的自然语言文字,机器学习算法是一窍不通的,因此需要将大类的文本及前后关系进行设计,并将其转换为数值化表示。一般来说,文本语言模型主要有词袋模型(BOW)、词向量模型和主题模型,目前比较常见是前两种,各种机器学习框架都有相应的word2vec的机制和支持模型,比如gensim和Scikit-learn(简称Sklearn),词袋模型向量化技术主要有One-Hot、文本计数数值化、词频-逆文档频率(TF-IDF)。详见以下示例,分别讲述了上述两种框架下的应用,同时结合了分词技术,去掉了停用词,加入了自定义分词。具体如下,供大家学习参考。
一、运行环境:python3.10环境,安装了 sklearn、gensim、jieba等。
二、应用示例:实现多段文本的自动分词,之后进行词袋模型的矢量化表示。完整代码如下。

from sklearn.feature_extraction import DictVectorizer  
from sklearn.feature_extraction.text import CountVectorizer  
from sklearn.feature_extraction.text import TfidfVectorizer  
from gensim.models import Word2Vec  
import gensim  
import jieba,sys  
# 将当前目录加载道path
sys.path.append("../") 
# 加载自定义分词词典  
jieba.load_userdict("../data/user_dict.txt")  # 去掉一些停用词和数字  
def rm_tokens(words,stwlist):  words_list = list(words)  stop_words = stwlist  for i in range(words_list.__len__())[::-1]:  if words_list[i] in stop_words: # 去除停用词  words_list.pop(i)  elif len(words_list[i]) == 1:  # 去除单个字符  words_list.pop(i)  elif words_list[i] == " ":  # 去除空字符  words_list.pop(i)  elif words_list[i].strip() == "/" or words_list[i].strip()  == "\\" or words_list[i].strip()  == "'" or words_list[i].strip()  == "\"":  # 去斜杠  words_list.pop(i)  return words_list  # 进行分词并返回
def cut_words(text):  result = rm_tokens(jieba.cut(text),stwlist)  print('list(jieba.cut(text))结果为:', result)  txt = ' '.join(result)  return txt  
# 创建停用词列表  
def get_stop_words(path=r'../data/user_stopwords.txt'):  file = open(path, 'r',encoding='utf-8').read().split('\n')  return set(file)  # 2 获取停用词  
stwlist = get_stop_words()  #类别向量数值化方式  
data = [  
{'name': 'Alan Turing', 'born': 1912, 'died': 1954},  
{'name': 'Herbert A. Simon', 'born': 1916, 'died': 2001},  
{'name': 'Jacek Karpinski', 'born': 1927, 'died': 2010},  
{'name': 'J.C.R. Licklider', 'born': 1915, 'died': 1990},  
{'name': 'Marvin Minsky', 'born': 1927, 'died': 2016},  
]#1.One-Hot编码,文本矢量化或数值化表示  
vec = DictVectorizer(sparse=False, dtype=int)  
print(vec.fit_transform(data))  
print(vec.get_feature_names())  
vec = DictVectorizer(sparse=True, dtype=int) #One-Hot编码,设置稀疏矩阵的紧凑表示  
data2=vec.fit_transform(data)  sample=[  '列出了aaa井的基本数据信息,描述了该井所在地区的钻探成果和钻井简况',  '列出了bbb井的基本数据信息及下x深结构图,详细记录了自拖航至,弃井作业,综合录井日记',  '列出了ccc井的基本数据信息,描述了该井所在地区的钻探成果和钻井简况'  
]  
sample2 = []  
for i in sample:  sample2.append(cut_words(i))  #2.文本计数的数值化转换表示  
vec = CountVectorizer(lowercase=False,stop_words=None,analyzer='word') #文本计数的数值化转换  
X = vec.fit_transform(sample2)  
print(vec.get_feature_names())  
print(X.toarray())  
print("词袋 = ",vec.vocabulary_)   #词袋,根据分词结果和首字母,进行编号  #3.词频-逆文档频率,文本矢量化或数值化表示  
vec = TfidfVectorizer(lowercase=False,stop_words=None,analyzer='word', use_idf=True,smooth_idf=True) #词频-逆文档频率  
X = vec.fit_transform(sample2)  
print(vec.get_feature_names())  
'基本数据信息' in vec.get_feature_names() #判断是否包含指定字符串  
print(X.toarray()) #输出词向量# 4.gensim的词袋模型  
# 需要将数据放在Dictionary中,带有unicode token  
sample2_unitoken = [d.split() for d in sample2]  
dictionary = gensim.corpora.Dictionary(sample2_unitoken)  
vec = [dictionary.doc2bow(word) for word in sample2_unitoken]  
print(vec)   #输出词向量# 5.gensim的n-gram模型  
bigram = gensim.models.Phrases(sample2_unitoken)  
txts = [bigram[line] for line in sample2_unitoken]  
dictionary = gensim.corpora.Dictionary(txts)  
vec = [dictionary.doc2bow(text) for text in txts]  
print(vec)   #输出词向量# 6.gensim的tfidf模型  
dictionary = gensim.corpora.Dictionary(sample2_unitoken)  
doc2bow = [dictionary.doc2bow(word) for word in sample2_unitoken]  
tfidf=gensim.models.TfidfModel(doc2bow)  
vec=[]  
for document in tfidf[doc2bow]:  vec.append(document)  
print(vec)  #输出词向量

这篇关于如何基于gensim和Sklearn实现文本矢量化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/430768

相关文章

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Nginx部署HTTP/3的实现步骤

《Nginx部署HTTP/3的实现步骤》本文介绍了在Nginx中部署HTTP/3的详细步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录前提条件第一步:安装必要的依赖库第二步:获取并构建 BoringSSL第三步:获取 Nginx

MyBatis Plus实现时间字段自动填充的完整方案

《MyBatisPlus实现时间字段自动填充的完整方案》在日常开发中,我们经常需要记录数据的创建时间和更新时间,传统的做法是在每次插入或更新操作时手动设置这些时间字段,这种方式不仅繁琐,还容易遗漏,... 目录前言解决目标技术栈实现步骤1. 实体类注解配置2. 创建元数据处理器3. 服务层代码优化填充机制详

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

Java实现字节字符转bcd编码

《Java实现字节字符转bcd编码》BCD是一种将十进制数字编码为二进制的表示方式,常用于数字显示和存储,本文将介绍如何在Java中实现字节字符转BCD码的过程,需要的小伙伴可以了解下... 目录前言BCD码是什么Java实现字节转bcd编码方法补充总结前言BCD码(Binary-Coded Decima

SpringBoot全局域名替换的实现

《SpringBoot全局域名替换的实现》本文主要介绍了SpringBoot全局域名替换的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录 项目结构⚙️ 配置文件application.yml️ 配置类AppProperties.Ja

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、

Java实现将HTML文件与字符串转换为图片

《Java实现将HTML文件与字符串转换为图片》在Java开发中,我们经常会遇到将HTML内容转换为图片的需求,本文小编就来和大家详细讲讲如何使用FreeSpire.DocforJava库来实现这一功... 目录前言核心实现:html 转图片完整代码场景 1:转换本地 HTML 文件为图片场景 2:转换 H

C#使用Spire.Doc for .NET实现HTML转Word的高效方案

《C#使用Spire.Docfor.NET实现HTML转Word的高效方案》在Web开发中,HTML内容的生成与处理是高频需求,然而,当用户需要将HTML页面或动态生成的HTML字符串转换为Wor... 目录引言一、html转Word的典型场景与挑战二、用 Spire.Doc 实现 HTML 转 Word1

C#实现一键批量合并PDF文档

《C#实现一键批量合并PDF文档》这篇文章主要为大家详细介绍了如何使用C#实现一键批量合并PDF文档功能,文中的示例代码简洁易懂,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言效果展示功能实现1、添加文件2、文件分组(书签)3、定义页码范围4、自定义显示5、定义页面尺寸6、PDF批量合并7、其他方法