如何基于gensim和Sklearn实现文本矢量化

2023-11-29 00:20

本文主要是介绍如何基于gensim和Sklearn实现文本矢量化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

     大家利用机器学习或深度学习开展文本分类或关联性分析之前,由于计算机只能分析数值型数据,而人类所熟悉的自然语言文字,机器学习算法是一窍不通的,因此需要将大类的文本及前后关系进行设计,并将其转换为数值化表示。一般来说,文本语言模型主要有词袋模型(BOW)、词向量模型和主题模型,目前比较常见是前两种,各种机器学习框架都有相应的word2vec的机制和支持模型,比如gensim和Scikit-learn(简称Sklearn),词袋模型向量化技术主要有One-Hot、文本计数数值化、词频-逆文档频率(TF-IDF)。详见以下示例,分别讲述了上述两种框架下的应用,同时结合了分词技术,去掉了停用词,加入了自定义分词。具体如下,供大家学习参考。
一、运行环境:python3.10环境,安装了 sklearn、gensim、jieba等。
二、应用示例:实现多段文本的自动分词,之后进行词袋模型的矢量化表示。完整代码如下。

from sklearn.feature_extraction import DictVectorizer  
from sklearn.feature_extraction.text import CountVectorizer  
from sklearn.feature_extraction.text import TfidfVectorizer  
from gensim.models import Word2Vec  
import gensim  
import jieba,sys  
# 将当前目录加载道path
sys.path.append("../") 
# 加载自定义分词词典  
jieba.load_userdict("../data/user_dict.txt")  # 去掉一些停用词和数字  
def rm_tokens(words,stwlist):  words_list = list(words)  stop_words = stwlist  for i in range(words_list.__len__())[::-1]:  if words_list[i] in stop_words: # 去除停用词  words_list.pop(i)  elif len(words_list[i]) == 1:  # 去除单个字符  words_list.pop(i)  elif words_list[i] == " ":  # 去除空字符  words_list.pop(i)  elif words_list[i].strip() == "/" or words_list[i].strip()  == "\\" or words_list[i].strip()  == "'" or words_list[i].strip()  == "\"":  # 去斜杠  words_list.pop(i)  return words_list  # 进行分词并返回
def cut_words(text):  result = rm_tokens(jieba.cut(text),stwlist)  print('list(jieba.cut(text))结果为:', result)  txt = ' '.join(result)  return txt  
# 创建停用词列表  
def get_stop_words(path=r'../data/user_stopwords.txt'):  file = open(path, 'r',encoding='utf-8').read().split('\n')  return set(file)  # 2 获取停用词  
stwlist = get_stop_words()  #类别向量数值化方式  
data = [  
{'name': 'Alan Turing', 'born': 1912, 'died': 1954},  
{'name': 'Herbert A. Simon', 'born': 1916, 'died': 2001},  
{'name': 'Jacek Karpinski', 'born': 1927, 'died': 2010},  
{'name': 'J.C.R. Licklider', 'born': 1915, 'died': 1990},  
{'name': 'Marvin Minsky', 'born': 1927, 'died': 2016},  
]#1.One-Hot编码,文本矢量化或数值化表示  
vec = DictVectorizer(sparse=False, dtype=int)  
print(vec.fit_transform(data))  
print(vec.get_feature_names())  
vec = DictVectorizer(sparse=True, dtype=int) #One-Hot编码,设置稀疏矩阵的紧凑表示  
data2=vec.fit_transform(data)  sample=[  '列出了aaa井的基本数据信息,描述了该井所在地区的钻探成果和钻井简况',  '列出了bbb井的基本数据信息及下x深结构图,详细记录了自拖航至,弃井作业,综合录井日记',  '列出了ccc井的基本数据信息,描述了该井所在地区的钻探成果和钻井简况'  
]  
sample2 = []  
for i in sample:  sample2.append(cut_words(i))  #2.文本计数的数值化转换表示  
vec = CountVectorizer(lowercase=False,stop_words=None,analyzer='word') #文本计数的数值化转换  
X = vec.fit_transform(sample2)  
print(vec.get_feature_names())  
print(X.toarray())  
print("词袋 = ",vec.vocabulary_)   #词袋,根据分词结果和首字母,进行编号  #3.词频-逆文档频率,文本矢量化或数值化表示  
vec = TfidfVectorizer(lowercase=False,stop_words=None,analyzer='word', use_idf=True,smooth_idf=True) #词频-逆文档频率  
X = vec.fit_transform(sample2)  
print(vec.get_feature_names())  
'基本数据信息' in vec.get_feature_names() #判断是否包含指定字符串  
print(X.toarray()) #输出词向量# 4.gensim的词袋模型  
# 需要将数据放在Dictionary中,带有unicode token  
sample2_unitoken = [d.split() for d in sample2]  
dictionary = gensim.corpora.Dictionary(sample2_unitoken)  
vec = [dictionary.doc2bow(word) for word in sample2_unitoken]  
print(vec)   #输出词向量# 5.gensim的n-gram模型  
bigram = gensim.models.Phrases(sample2_unitoken)  
txts = [bigram[line] for line in sample2_unitoken]  
dictionary = gensim.corpora.Dictionary(txts)  
vec = [dictionary.doc2bow(text) for text in txts]  
print(vec)   #输出词向量# 6.gensim的tfidf模型  
dictionary = gensim.corpora.Dictionary(sample2_unitoken)  
doc2bow = [dictionary.doc2bow(word) for word in sample2_unitoken]  
tfidf=gensim.models.TfidfModel(doc2bow)  
vec=[]  
for document in tfidf[doc2bow]:  vec.append(document)  
print(vec)  #输出词向量

这篇关于如何基于gensim和Sklearn实现文本矢量化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/430768

相关文章

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

C++中悬垂引用(Dangling Reference) 的实现

《C++中悬垂引用(DanglingReference)的实现》C++中的悬垂引用指引用绑定的对象被销毁后引用仍存在的情况,会导致访问无效内存,下面就来详细的介绍一下产生的原因以及如何避免,感兴趣... 目录悬垂引用的产生原因1. 引用绑定到局部变量,变量超出作用域后销毁2. 引用绑定到动态分配的对象,对象

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java AOP面向切面编程的概念和实现方式

《JavaAOP面向切面编程的概念和实现方式》AOP是面向切面编程,通过动态代理将横切关注点(如日志、事务)与核心业务逻辑分离,提升代码复用性和可维护性,本文给大家介绍JavaAOP面向切面编程的概... 目录一、AOP 是什么?二、AOP 的核心概念与实现方式核心概念实现方式三、Spring AOP 的关

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

Linux挂载linux/Windows共享目录实现方式

《Linux挂载linux/Windows共享目录实现方式》:本文主要介绍Linux挂载linux/Windows共享目录实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录文件共享协议linux环境作为服务端(NFS)在服务器端安装 NFS创建要共享的目录修改 NFS 配

通过React实现页面的无限滚动效果

《通过React实现页面的无限滚动效果》今天我们来聊聊无限滚动这个现代Web开发中不可或缺的技术,无论你是刷微博、逛知乎还是看脚本,无限滚动都已经渗透到我们日常的浏览体验中,那么,如何优雅地实现它呢?... 目录1. 早期的解决方案2. 交叉观察者:IntersectionObserver2.1 Inter

Spring Gateway动态路由实现方案

《SpringGateway动态路由实现方案》本文主要介绍了SpringGateway动态路由实现方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随... 目录前沿何为路由RouteDefinitionRouteLocator工作流程动态路由实现尾巴前沿S