【Redis核心原理和应用实践】应用 6:断尾求生 —— 简单限流

2023-11-28 22:58

本文主要是介绍【Redis核心原理和应用实践】应用 6:断尾求生 —— 简单限流,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

限流算法在分布式领域是一个经常被提起的话题,当系统的处理能力有限时,如何阻止计划外的请求继续对系统施压,这是一个需要重视的问题。老钱在这里用 “断尾求生” 形容限流背后的思想,当然还有很多成语也表达了类似的意思,如弃卒保车、壮士断腕等等。 
除了控制流量,限流还有一个应用目的是用于控制用户行为,避免垃圾请求。比如在 UGC 社区,用户的发帖、回复、点赞等行为都要严格受控,一般要严格限定某行为在规定时间内允许的次数,超过了次数那就是非法行为。对非法行为,业务必须规定适当的惩处策略。 

如何使用 Redis 来实现简单限流策略?

首先我们来看一个常见 的简单的限流策略。系统要限定用户的某个行为在指定的时间里只能允许发生 N 次,如何使用 Redis 的数据结构来实现这个限流的功能? 
我们先定义这个接口,理解了这个接口的定义,读者就应该能明白我们期望达到的功能。 

# 指定用户 user_id 的某个行为 action_key 在特定的时间内 period 只允许发生一定的次数 
max_count 
def is_action_allowed(user_id, action_key, period, max_count): return True 
# 调用这个接口 , 一分钟内只允许最多回复 5 个帖子 
can_reply = is_action_allowed("laoqian", "reply", 60, 5) 
if can_reply: do_reply() 
else: raise ActionThresholdOverflow() 

先不要继续往后看,想想如果让你来实现,你该怎么做? 

解决方案 

这个限流需求中存在一个滑动时间窗口,想想 zset 数据结构的 score 值,是不是可以通过 score 来圈出这个时间窗口来。而且我们只需要保留这个时间窗口,窗口之外的数据都可以砍掉。那这个 zset 的 value 填什么比较合适呢?它只需要保证唯一性即可,用 uuid 会比较浪费空间,那就改用毫秒时间戳吧。 


如图所示,用一个 zset 结构记录用户的行为历史,每一个行为都会作为 zset 中的一个 key 保存下来。同一个用户同一种行为用一个 zset 记录。 为节省内存,我们只需要保留时间窗口内的行为记录,同时如果用户是冷用户,滑动时间窗口内的行为是空记录,那么这个 zset 就可以从内存中移除,不再占用空间。 
通过统计滑动窗口内的行为数量与阈值 max_count 进行比较就可以得出当前的行为是否允许。用代码表示如下: 

# coding: utf8 import time 
import redis client = redis.StrictRedis() def is_action_allowed(user_id, action_key, period, max_count): key = 'hist:%s:%s' % (user_id, action_key) now_ts = int(time.time() * 1000)  # 毫秒时间戳 with client.pipeline() as pipe:  # client 是 StrictRedis 实例 # 记录行为 pipe.zadd(key, now_ts, now_ts)  # value 和 score 都使用毫秒时间戳 # 移除时间窗口之前的行为记录,剩下的都是时间窗口内的 pipe.zremrangebyscore(key, 0, now_ts - period * 1000) # 获取窗口内的行为数量 pipe.zcard(key) # 设置 zset 过期时间,避免冷用户持续占用内存 # 过期时间应该等于时间窗口的长度,再多宽限 1s pipe.expire(key, period + 1) # 批量执行 _, _, current_count, _ = pipe.execute() # 比较数量是否超标 return current_count <= max_count for i in range(20): 
print is_action_allowed("laoqian", "reply", 60, 5) 

Java 版: 

public class SimpleRateLimiter { private Jedis jedis; public SimpleRateLimiter(Jedis jedis) { this.jedis = jedis; } public boolean isActionAllowed(String userId, String actionKey, int period, int maxCount) { String key = String.format("hist:%s:%s", userId, actionKey); long nowTs = System.currentTimeMillis(); Pipeline pipe = jedis.pipelined(); pipe.multi(); pipe.zadd(key, nowTs, "" + nowTs); pipe.zremrangeByScore(key, 0, nowTs - period * 1000); Response<Long> count = pipe.zcard(key); pipe.expire(key, period + 1); pipe.exec(); pipe.close(); return count.get() <= maxCount; } public static void main(String[] args) { Jedis jedis = new Jedis(); SimpleRateLimiter limiter = new SimpleRateLimiter(jedis); for(int i=0;i<20;i++) { System.out.println(limiter.isActionAllowed("laoqian", "reply", 60, 5)); } } 
} 

这段代码还是略显复杂,需要读者花一定的时间好好啃。它的整体思路就是:每一个行为到来时,都维护一次时间窗口。将时间窗口外的记录全部清理掉,只保留窗口内的记录。
zset 集合中只有 score 值非常重要,value 值没有特别的意义,只需要保证它是唯一的就可以了。 
因为这几个连续的 Redis 操作都是针对同一个 key 的,使用 pipeline 可以显著提升 Redis 存取效率。但这种方案也有缺点,因为它要记录时间窗口内所有的行为记录,如果这个量很大,比如限定 60s 内操作不得超过 100w 次这样的参数,它是不适合做这样的限流的,因为会消耗大量的存储空间。 

小结 

本节介绍的是限流策略的简单应用,它仍然有较大的提升空间,适用的场景也有限。为了解决简单限流的缺点,下一节我们将引入高级限流算法——漏斗限流。

这篇关于【Redis核心原理和应用实践】应用 6:断尾求生 —— 简单限流的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/430506

相关文章

redis中使用lua脚本的原理与基本使用详解

《redis中使用lua脚本的原理与基本使用详解》在Redis中使用Lua脚本可以实现原子性操作、减少网络开销以及提高执行效率,下面小编就来和大家详细介绍一下在redis中使用lua脚本的原理... 目录Redis 执行 Lua 脚本的原理基本使用方法使用EVAL命令执行 Lua 脚本使用EVALSHA命令

在 Spring Boot 中实现异常处理最佳实践

《在SpringBoot中实现异常处理最佳实践》本文介绍如何在SpringBoot中实现异常处理,涵盖核心概念、实现方法、与先前查询的集成、性能分析、常见问题和最佳实践,感兴趣的朋友一起看看吧... 目录一、Spring Boot 异常处理的背景与核心概念1.1 为什么需要异常处理?1.2 Spring B

Redis 热 key 和大 key 问题小结

《Redis热key和大key问题小结》:本文主要介绍Redis热key和大key问题小结,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、什么是 Redis 热 key?热 key(Hot Key)定义: 热 key 常见表现:热 key 的风险:二、

Java Spring 中 @PostConstruct 注解使用原理及常见场景

《JavaSpring中@PostConstruct注解使用原理及常见场景》在JavaSpring中,@PostConstruct注解是一个非常实用的功能,它允许开发者在Spring容器完全初... 目录一、@PostConstruct 注解概述二、@PostConstruct 注解的基本使用2.1 基本代

C#使用StackExchange.Redis实现分布式锁的两种方式介绍

《C#使用StackExchange.Redis实现分布式锁的两种方式介绍》分布式锁在集群的架构中发挥着重要的作用,:本文主要介绍C#使用StackExchange.Redis实现分布式锁的... 目录自定义分布式锁获取锁释放锁自动续期StackExchange.Redis分布式锁获取锁释放锁自动续期分布式

Golang HashMap实现原理解析

《GolangHashMap实现原理解析》HashMap是一种基于哈希表实现的键值对存储结构,它通过哈希函数将键映射到数组的索引位置,支持高效的插入、查找和删除操作,:本文主要介绍GolangH... 目录HashMap是一种基于哈希表实现的键值对存储结构,它通过哈希函数将键映射到数组的索引位置,支持

C语言中位操作的实际应用举例

《C语言中位操作的实际应用举例》:本文主要介绍C语言中位操作的实际应用,总结了位操作的使用场景,并指出了需要注意的问题,如可读性、平台依赖性和溢出风险,文中通过代码介绍的非常详细,需要的朋友可以参... 目录1. 嵌入式系统与硬件寄存器操作2. 网络协议解析3. 图像处理与颜色编码4. 高效处理布尔标志集合

Spring Boot 整合 SSE的高级实践(Server-Sent Events)

《SpringBoot整合SSE的高级实践(Server-SentEvents)》SSE(Server-SentEvents)是一种基于HTTP协议的单向通信机制,允许服务器向浏览器持续发送实... 目录1、简述2、Spring Boot 中的SSE实现2.1 添加依赖2.2 实现后端接口2.3 配置超时时

Redis Pipeline(管道) 详解

《RedisPipeline(管道)详解》Pipeline管道是Redis提供的一种批量执行命令的机制,通过将多个命令一次性发送到服务器并统一接收响应,减少网络往返次数(RTT),显著提升执行效率... 目录Redis Pipeline 详解1. Pipeline 的核心概念2. 工作原理与性能提升3. 核

Python使用getopt处理命令行参数示例解析(最佳实践)

《Python使用getopt处理命令行参数示例解析(最佳实践)》getopt模块是Python标准库中一个简单但强大的命令行参数处理工具,它特别适合那些需要快速实现基本命令行参数解析的场景,或者需要... 目录为什么需要处理命令行参数?getopt模块基础实际应用示例与其他参数处理方式的比较常见问http